Presentation Abstract

Program# Poster#: 1524/D1093
Abstract Title: Effect of Palmitylethanolamide on Aqueous Humor Outflow
Presentation Start/End Time: Monday, May 02, 2011, 8:30 AM - 10:15 AM
Session Number: 232
Session Title: Intraocular Pressure
Location: Hall B/C
Reviewing Code: 130 aqueous humor dynamics - PH
Author Block: Akhilesh Kumar, Zhiyong Qiao, Pritesh Kumar, Zhao-Hui Song. Pharmacology & Toxicology, University of Louisville, Louisville, KY.
Keywords: 567 intraocular pressure; 421 anterior segment; 427 aqueous

Abstract Body:

Purpose: To study the effects of palmitylethanolamide (PEA), a fatty acid ethanolamide and an endogenous cannabinoid, on aqueous humor outflow via the trabecular meshwork pathway.

Methods: The effects of PEA on aqueous humor outflow via the trabecular meshwork pathway were measured using a porcine anterior segment perfused organ culture model. Different concentrations of PEA were administered to the perfusion medium and the aqueous humor outflow facility was monitored for 5 hours. CB1 antagonist SR141716A and CB2 antagonist SR144528 were used, respectively, to investigate the possible involvement of CB1 and CB2 receptors in the outflow effects induced by PEA. O-1918, a cannabinoid analog that acts as a selective antagonist at the non-CB1/CB2 receptors, was also used to investigate whether non-CB1/CB2 cannabinoid receptors are involved in the PEA-induced outflow effects. PEA induced activation of p42/44 mitogen-activated protein (MAP) kinase was determined by western blot analysis using an anti-phospho p42/44 MAP kinase antibody.

Results: Administration of PEA caused a concentration-dependent enhancement of aqueous humor outflow facility, with the maximum effect (135.6 ± 7.1 % of basal outflow facility) achieved at 2 hour after the administration of 30 nM of PEA. Pretreatment with 1 μM O-1918 produced a full antagonism on the PEA-induced increase of aqueous humor outflow facility. However, pretreatment with 1 μM of SR141716A or 1 μM of SR141716A had no effect on PEA-induced enhancement of aqueous humor outflow facility. Treatment of trabecular meshwork cells with PEA for 10 min activated phosphorylation of p42/44 MAP kinase which was blocked by pretreatment with O-1918. Furthermore, PD98059, an inhibitor of the p42/44 MAP kinase pathway, blocked both PEA-induced phosphorylation of p42/44 MAP kinase and enhancement of aqueous humor outflow facility.

Conclusions: The results from this study demonstrate that PEA increases aqueous humor outflow through the trabecular meshwork pathway, and these effects are mediated by non-CB1/CB2 cannabinoid receptors through activation of p42/44.

Commercial Relationships: Akhilesh Kumar, None; Zhuanhong Qiao, None; Pritesh Kumar, None; Zhao-Hui Song, None

Support: NIH Grants EY13632 and DA11551