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Abstract: Optical coherence tomography angiography has recently been 

used to visualize choroidal neovascularization (CNV) in participants with 

age-related macular degeneration. Identification and quantification of CNV 

area is important clinically for disease assessment. An automated algorithm 

for CNV area detection is presented in this article. It relies on denoising and 

a saliency detection model to overcome issues such as projection artifacts 

and the heterogeneity of CNV. Qualitative and quantitative evaluations 

were performed on scans of 7 participants. Results from the algorithm 

agreed well with manual delineation of CNV area. 
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OCIS codes: (170.4500) Optical coherence tomography; (170.3880) Medical and biological 

imaging; (100.0100) Image processing. 
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1. Introduction 

Age-related macular degeneration (AMD) is the leading cause of blindness in people 50 years 

or older in the developed world [1, 2]. The advanced, neovascular form of AMD is 

characterized by the presence of choroidal neovascularization (CNV), pathologic new vessels 

from the choroid that grow into the avascular outer retina through breaks in Bruch’s 

membrane (BM). CNV can lead to subretinal hemorrhage, fluid exudation, lipid deposition, 

detachment of the retinal pigment epithelium from the choroid, fibrotic scars, or a 

combination of these findings that result in vision loss [2–5]. Fluorescein (FA) and/or 

indocyanine green angiography (ICGA) have traditionally been used to detect and assess 

CNV in the clinic. These techniques are however 2-dimensional (2D) and involve intravenous 

dye injections, which can lead to nausea and anaphylaxis [6]. 
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Optical coherence tomography (OCT) is a noninvasive, depth resolved, volumetric 

imaging technique that is commonly used to visualize retinal morphology [7]. However, 

conventional structural OCT is not able to detect blood flow and discriminate vascular tissue 

from its surroundings. To overcome this limitation, several OCT angiography methods have 

been proposed to identify blood flow at the microcirculation level [8–12]. We developed the 

split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to distinguish blood 

flow from static tissues based on detecting the reflectance amplitude decorrelation over 

consecutive cross-sectional B-scans at the same location [13, 14]. Segmentation of SSADA 

based OCT angiograms can identify CNV as blood flow in the outer retina, a region devoid of 

blood flow in healthy eyes [15–19]. Accurate detection and quantification of CNV would be 

extremely useful to the clinicians in the diagnosis and evaluation of the therapeutic effect of 

different treatments. Manual delineation from experienced experts is the simplest method to 

quantify the CNV lesion. However, this method is subjective, operator intensive, and time-

consuming. Therefore, it is valuable to develop a reliable and robust automated detection 

algorithm for quantifying the CNV lesion. 

Due to certain technological limitations and the biologic nature of CNV, there are many 

issues which need to be addressed regarding automated CNV quantification. Firstly, OCT 

angiography is susceptible to shadowgraphic flow projection artifacts. Blood vessels cast 

shadows on deeper structures. Moving blood cells in the blood vessel cast dynamic shadows 

due to variation in scattering and absorption. This dynamic shadowing causes fluctuation in 

the intensity of OCT signal from structures under the blood vessels that is detect as 

decorrelation by the SSADA algorithm. The end result is that the vascular pattern from the 

superficial inner retina is replicated on the deeper outer retina. Secondly, while the effect of 

eye motion during the scan can be minimized by subtracting bulk motion noise [13, 20] and 

using orthogonal registration [21], motion artifacts in the form of horizontal or vertical lines 

may remain. Finally, the intrinsic complexity of CNV also makes automated detection 

difficult. The shape, size, location, and velocity of flow of the CNV can vary between 

participants, and the boundary between CNV and what is not CNV, the background, can be 

hard to distinguish. Thus, how to deal with artifacts and account for the complexity of the 

CNV lesion are key problems which need to be solved. 

Methods to segment and analyze vascular structures from fundus or FA images have been 

based on structure enhancement filters [22, 23] and/or geodesic methods [24]. Few works 

have been published about segmentation of CNV from OCT angiography images [15]. 

Because the CNV lesion is dissimilar from projection and motion artifacts, we sought to 

explore saliency based detection methods [25]. Briefly, saliency describes an abstraction of 

how the human visual system characterizes regions or objects which stand out from their 

surrounding parts. Saliency based methods attempt to replicate this process for the detection 

of dominant objects in a scene based on various image features. In this article, we propose an 

automated algorithm, termed “saliency algorithm,” dedicated to CNV recognition in outer 

retina en face angiograms from OCT angiography. The algorithm was tested on scans from 7 

participants with neovascular AMD, and the results were compared to output from the 

algorithm we used previously, termed the “previous algorithm” [15], and results from manual 

delineation of the CNV. 

2. Materials and methods 

2.1 Patient selection and data collection 

Participants were recruited from those diagnosed with neovascular AMD at the Casey Eye 

Institute Retina Service based on clinical presentation, examination, and fluorescein 

angiography. They were enrolled after informed consent in accordance with an Institutional 

Review Board/Ethics Committee approved protocol at Oregon Health & Science University 

and in compliance with the Declaration of Helsinki. 
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Two volumetric data sets were collected from single eyes of participants with neovascular 

AMD. All of the data was collected using a commercial 70 kHz spectral domain OCT system 

with a center wavelength of 840 nm (RTVue-XR, Optovue, CA). The macular angiography 

scan protocol for a single volumetric data set contained 2 scans covering a 3 × 3 mm area. 

Each scan comprised of 304 × 304 × 2 A-scans acquired in less than 3 seconds. The fast 

scanning direction was in the horizontal direction for the first scan and in the vertical direction 

for the second. The SSADA algorithm was applied to detect flow between the 2 consecutive 

B-scans at the same location [13, 14]. The two scans were then registered and merged through 

an orthogonal registration algorithm [21]. 

Sixteen participants were recruited. Data from 6 participants were excluded due to low 

image quality (structural OCT signal strength index <50), severe motion artifacts, and/or 

shadowing due to pigment epithelial detachment. Data from 3 other participants were 

excluded because an experienced grader could not identify the presence of CNV on OCT 

angiography. Data from the remaining 7 participants were used in this study. 

2.2 Algorithm overview 

An overview of the developed algorithm is shown in Fig. 1. A pre-processing step was first 

performed to reduce projection artifacts from the outer retina. After denoising, the CNV 

region was more distinctive. Vascular pattern recognition through a saliency model followed. 

Finally, post-processing steps based on nonlinear filtering, thresholding, and morphological 

operations were applied to generate the CNV membrane mask. The following three sections 

will describe the process in detail. The algorithm was implemented with custom software 

written in Matlab 2011a (Mathworks, Natick, MA). 

 

Fig. 1. Overview of the developed choroidal neovascularization (CNV) detection algorithm. 

2.3 Pre-processing 

Retinal circulations are primarily transverse to the OCT light beam and are best visualized by 

projecting the volumetric data set as 2D en face images. Anatomical landmarks from 

structural OCT images were used to guide semi-automated segmentation to separate 

circulations based on depth [26]. Maximum flow projection between the internal limiting 

membrane (ILM) and outer plexiform layer (OPL) generated the en face inner retinal 

angiogram. Maximum flow projection between the outer boundary of OPL to BM generated 

the en face outer retinal angiogram, normally an avascular region. CNV grows from the 
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choroid through BM and often is directly adjacent to the retinal pigment epithelium (RPE). 

Inner retinal vessels project artifact onto the RPE, due to its high reflectance on structural 

OCT. Projection artifacts in the outer retinal angiogram interfere with CNV detection. 

Angiographic projection and motion artifacts ideally need to be minimized prior to 

application of the saliency method. In previous work [15], we used a binary large inner retinal 

vessel map to mask vessel projections on the outer retinal angiogram. However, it can be hard 

to determine the threshold for obtaining such a vessel mask. If the threshold value is low, the 

mask would contain smaller inner retinal vessels which could remove some useful 

information in the CNV region. Alternatively, masking just large vessels may leave small 

inner retinal vessel projections that are hard to differentiate as projection artifact or CNV. In 

this algorithm, the inner retinal angiogram was filtered by a 20 × 20 pixel Gaussian filter with 

a sigma of 0.1. The filtered inner retinal angiogram was then subtracted from the outer retinal 

angiogram. The resulting image better highlighted the CNV region, but still contained small, 

bright discrete noise areas. 

2.4 Vascular pattern recognition 

Because the CNV becomes more distinct in the outer retinal angiogram after artifact removal, 

saliency based detection could be an effective and robust method. Detection accuracy depends 

on both the distinctiveness of the target object and the homogeneity and/or blurred degree of 

the background. As a result of projection removal, some parts of the CNV region became 

discontinuous and fuzzy. Therefore, the saliency model should detect not only the salient 

region and but also neighboring regions. Context-aware saliency detection described by 

Goferman, et al. may be able to account for the above issues. This method combines context-

awareness and saliency detection with the aim of identifying prominent objects and parts of 

the background that contain similar contextual information [27]. 

Context-aware saliency detection borrows from some basic principles associated with 

human visual attention: local low-level considerations such as brightness and contrast, global 

considerations to ignore reoccurring features, and visual organization rules regarding object 

center(s) of gravity. For many image processing applications, local and global considerations 

incorporate color information, but OCT angiography is simplified in a way as it produces 

what can be considered grayscale en face images. Here, brightness, orientation contrast, and 

positional distance were used together to define distinctiveness. In the en face outer retinal 

angiogram, each pixel i was assessed. The local context of pixel i was given by considering its 

surrounding pixels in a 7 × 7 pixel patch centered on the pixel. The saliency of each pixel i 

depends on the distinctiveness of its patch. We defined dbright (pi, pj) as the Euclidean distance 

between the summed intensities of patches pi and pj in the grayscale image, normalized to the 

range [0,1]. 

However, because there were still some small, bright non-CNV areas in the projection 

removed angiogram, brightness information alone was not enough. Therefore, the local 

orientation information [28] was incorporated to aid in the determination of what is of 

interest. The local orientation information was obtained utilizing Gabor filters, which are a 

product of a cosine grating and 2D Gaussian envelope, at four preferred orientations θ  {0°, 

45°, 90°, 135°}. The size of the Gabor kernel was 31 × 31 pixels. The Euclidean distance 

dorientation (pi, pj)|θ between patches pi and pj was calculated as the orientation contrast at the 

corresponding orientation θ: 

    
1

, ,
orientation i j orientation i j

d p p d p p
N


   (1) 

where θ = 0°, 45°, 90°, 135° and N = 4. This was also normalized to the range [0,1]. In the 

projection removed outer retinal angiogram, CNV regions were grouped together. Thus, let 

dposition(pi, pj) be the positional distance between patches pi and pj. The distinctiveness between 

two patches is then defined as 
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( , )
2(1 ( , ))

bright i j orientation i j

i j

position i j

d p p d p p
d p p

c d p p




 
 (2) 

where c = 3. The distinctiveness measure considers the local and global information 

simultaneously. It is proportional to the difference in appearance represented by brightness 

and orientation contrast and inversely proportional to positional distance. Pixel i is considered 

salient when d(pi, pj) is high for all j. 

Multi-scale saliency detection was further incorporated to decrease the saliency of 

background and enhance the contrast between salient and non-salient areas. Typically, 

background patches are more likely to be similar at multiple scales, while the dominant object 

is salient and could have similar patches at a few scales but not at all of them. Because using 

multiple scales increases computation time, we simplified the comparisons to only the K most 

similar patches. The saliency value of pixel i at a single-scale r was then defined as 

 
1

1
1 exp{ ( , )}

K
r r r

i i k

k

S d p q
K 

     (3) 

where qK belongs to the identified K most similar patches and K = 65. When searching for the 

K most similar patches, patches of 7 × 7 with 50 percent overlap were considered. 

The saliency of pixel i at scale r was determined from the K most similar patches at 

multiple scales Rq = {r, (12)r, (14)r}. At each scale r, the saliency map was normalized to the 

range [0,1] and interpolated back to original image size of 304 × 304 pixels. Equation (3) was 

refined as 

 
1

1
1 exp{ ( , )}k

K
rr r

i i k

k

S d p q
K 

     (4) 

where rkRq. The final saliency value for pixel i was the mean of all patches pi at different 

scale r. 

 
1 r

i i

r R

S S
M





   (5) 

Four scales were used, R = {100%, 80%, 50%, 30%}. 

One final consideration was that areas close to the attention foci are supposed to be more 

distinctive than those regions far away. The visual contextual effect was simulated. A 

threshold operation was applied to extract the most attended localized areas from the saliency 

map, which contained all the pixels with their saliency value greater than a threshold of 0.8. 

The saliency value of pixels outside the most attended localized areas was redefined 

according to its Euclidean distance dfoci
r
(i) of position to the closest attended pixel at scale r, 

normalized to range [0,1]. The saliency of each pixel was modified as 

 
1

(1 ( ))r r

i i foci

r R

S S d i
M





   (6) 

After this step, the saliency value of the interesting background in the neighborhood of salient 

objects will be increased. This allowed for the inclusion of neighboring regions to ensure all 

of the CNV was detected. 

2.5 Post-processing 

The integration of multi-scale enhancement and context-awareness led to a saliency map that 

approximated the CNV region. However, it was hard to determine the threshold to extract the 

CNV region from the saliency map as the map was usually blurred at its boundaries. To do so, 
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we first used a Laplacian edge detection filter on the saliency map. In parallel, the bilateral 

filter proposed by Tomasi, et al. [29] was used to smooth within the target region and preserve 

the boundary. This bilateral filter was a weighted average operation process. Unlike the 

traditional Gaussian filter which utilizes just positional information as the weight, the weight 

of the shift-invariant Gaussian filter belonging to the bilateral filter contains both positional 

distance and intensity information. After bilateral filtering, the boundary information detected 

by the Laplacian edge detection operator was used to enhance the boundaries. Otsu’s 

threshold method was used to extract the rough CNV region. Some small discrete regions still 

remained. Morphological operations were then used to remove small areas (<80 pixels) and 

fill holes. Finally, the CNV membrane mask was obtained. It was a binary image by which the 

original en face outer retinal angiogram was multiplied to extract the CNV. A threshold 

operator was used to calculate the CNV area. 

2.6 Verification of results 

We assessed within-visit repeatability of the previous automated algorithm, saliency 

algorithm, and manual delineation using coefficient of variation (CV) and intraclass 

correlation (ICC). For manual delineation, the CNV boundary was contoured by an 

experienced grader, and a threshold operator was used to calculate the CNV area. 

To compare the results from the two automated algorithms to results from manual 

delineation, we used the Jaccard similarity metric, which is defined as 

 
| |

( , )
| |

s m

s m

s m

I I
J I I

I I





 (7) 

where Is is the segmentation result from one of the automated pipelines and Im is the result 

from manual delineation. The Jaccard coefficient ranges from 0 to 1, where 1 denotes the two 

were identical and 0 if they were completely dissimilar. Using the manual delineation results 

as the standard, errors rates were also computed. False positive error was the ratio of the total 

number of automatically segmented pixels that were not included in the manual segmentation 

result to the total number of manually segmented pixels. False negative error was the ratio of 

the total number of manually segmented pixels that were not included in the automated 

segmentation result to the total number of manually segmented pixels [30]. 

3. Results 

The en face outer retinal angiogram from a participant with neovascular AMD was used as an 

example to show the workflow of the previous algorithm and saliency algorithm. Figure 2(A) 

shows the original outer retinal angiogram with CNV and artifacts. The left column illustrates 

the steps of the previous algorithm. The mask of inner retinal vessels shown in Fig. 2(B1) was 

used to remove the large vessels projections from the outer retina. The result shown in Fig. 

2(C1) still has some small vessel projections and motion artifacts. The previous algorithm 

then applied a Gaussian filter to reduce the remaining artifacts (Fig. 2(D1)). For the final step, 

a threshold operator was used to extract the CNV area (Fig. 2(E1)). However, artifacts 

remained after the mask subtraction and thresholding, leading some to be misclassified as 

CNV. In the saliency algorithm, the inner retinal angiogram was first smoothed by a 20 × 20 

pixel Gaussian filter to produce the filtered inner retina shown in Fig. 2(B2). By subtracting 

the filtered inner retina from the outer retina, most of the projection artifacts were removed 

(Fig. 2(C2)) and some CNV signal was also reduced. However, the CNV area became more 

distinctive in the outer retina. Then, a context-aware saliency model based on brightness, 

orientation, and position information was used to detect the CNV region (Fig. 2(C2)). The 

saliency calculation was done at multiple scales (Fig. 2(F1)) and combined into a single 

saliency map (Fig. 2(D2)). To aid in the segmentation of the CNV, an edge-enhanced 

nonlinear filter was used to smooth the CNV region and enhance the boundary. Next, Otsu’s 
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method was used to determine the threshold. Finally, morphological operations were used to 

remove small isolated regions and fill holes to obtain the CNV membrane mask. These post-

processing steps are shown in Fig. 2(F2). The en face outer retinal angiogram was multiplied 

by the CNV membrane mask, and a threshold operator was used to determine the CNV area 

(Fig. 2(E2)). 

 

 

Fig. 2. The previous automated choroidal neovascularization (CNV) segmentation algorithm 

and proposed saliency algorithm. (A) Original outer retinal angiogram from a participant with 

neovascular age-related macular degeneration (AMD) showing artifacts and CNV. (B1) Inner 
retinal large vessel mask used to subtract large vessel projections from the outer retina. (B2) 

Filtered inner retina used to subtract artifacts from the outer retina. (C1) Outer retina with large 

vessel projections removed. (C2) Outer retina with artifacts removed. (D1) Gaussian filtering 
with the aim to reduce the remaining artifacts. (D2) Saliency map showing the CNV region. 

(E1) CNV area obtained by a threshold operator. (E2) CNV area obtained by multiplying the 

CNV membrane mask and original en face outer retinal angiogram and using a threshold 
operator. (F1) Multi-scale saliency results showing intermediate results of calculating the 

saliency map. (F2) Post-processing procedure including nonlinear filtering to enhance the 

boundaries and smooth the saliency map, Otsu’s method for determining the threshold, and 
morphological operations for obtaining the CNV membrane mask. (A, B2, C1, C2, D1) The 

display scale of decorrelation values ranges from 0.025 to 0.25. 
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The results from the saliency algorithm were compared with results from the previous 

automated algorithm and manual delineation of the CNV. Data from a single eye of 7 

participants with neovascular AMD were analyzed. Two volumetric data sets from each eye 

were evaluated to assess within-visit repeatability. The results from one volumetric data set 

are shown in Figs. 3 and 4. The cases included both type I and type II (participants #1, 5) 

CNV membranes with a wide range of sizes. An expert human grader delineated the boundary 

of the CNV membrane on the en face maximum flow projection angiogram of the outer 

retinal slab, while also viewing the inner retinal angiogram. The saliency algorithm 

automatically outlined the CNV boundary and calculated CNV area. The algorithm required 

17.5 seconds to execute on an Intel Xeon CPU (E3-1226, 3.3 Ghz), of which 94% of the time 

was spent on generating the saliency map. 

 

Fig. 3. En face OCT angiograms from all participants except for #5 which is shown in Fig. 4. 

The top row (A1-7) shows the en face maximum flow projection angiogram from the outer 
retinal slab without any additional processing. The second row (B1-5) shows the results of 

manual delineation of CNV by an expert human. The third row (C1-5) shows the results from 

the automated saliency algorithm. The bottom row (D1-5) shows the results from the previous 
automated algorithm. CNV areas, as delineated by a grader or algorithm, are shown below each 

processed image. The display scale of decorrelation values ranges from 0.025 to 0.25 for all 

images. 
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Fig. 4. En face OCT angiograms from the case (participant #5) where there was the greatest 

difference in CNV area between the saliency algorithm and expert manual grading. (A) Inner 

retinal angiogram. (B) Outer retinal angiogram without any additional processing. (C) Manual 
delineation of CNV by an expert human. (D) Automated saliency algorithm. Yellow arrows 

highlight points of interest for comparison between C and D. (E) Previous automated 
algorithm. CNV areas, as delineated by a grader or algorithms, are shown below each 

processed image. (F) Choriocapillaris angiogram without any additional processing. The 

display scale of decorrelation values ranges from 0.025 to 0.25 for all images. 

Qualitatively, the results from the saliency algorithm were closely matched to that from 

manual delineation. However, the saliency algorithm tended to include less area from the 

CNV due to the projection artifact removal step. This is highlighted in the results from 

participant #5 in Fig. 4 (compare the respective regions as indicated by yellow arrows in Figs. 

4(C) and 4(D)). The previous algorithm also identified similar shapes for the CNV 

membranes, but did not cleanly remove scattered background noise due to projection and 

motion artifacts. The continuity of the CNV network was also often broken up by the higher 

decorrelation threshold used. It was clear that the previous algorithm differed more from 

manual CNV grading, and this poor agreement was reflected in the Jaccard similarity metric, 

false negative, and false positive CNV pixel identification rates (Table 1). In contrast, the 

saliency algorithm agreed well with manual grading. The saliency algorithm was significantly 

better than the previous algorithm in all measures of agreement with manual grading (Table 

1). 

Table 1. Agreement Between Automated Algorithms and Manual Grading of Choroidal 

Neovascularization 

 
Proposed 

saliency algorithm 
Previous algorithm P-value 

Jaccard similarity metric 0.834 ± 0.125 0.157 ± 0.059 <0.001 

False positive error 0.043 ± 0.046 0.120 ± 0.066 0.001 

False negative error 0.134 ± 0.109 0.826 ± 0.059 <0.001 

Measures of agreement were computed on a pixel-by-pixel basis from graded en face angiograms of 

choroidal neovascularization. Mean ± standard deviation of the Jaccard similarity metric and error rates 

were computed from 7 participants. P-values were based on the paired Wilcoxon rank-sum test. 

Repeatability of CNV area measurement was calculated from the 2 sets of OCT 

angiography scans obtained from each participant. All methods had relatively good 

repeatability as measured by CV and ICC (Table 2). 
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Table 2. Repeatability of Choroidal Neovascularization Quantification 

 Manual 
Proposed 

saliency algorithm 
Previous algorithm 

CV 3.90% 6.70% 7.15% 

ICC 0.998 0.992 0.993 

Abbreviations: coefficient of variation (CV); intraclass correlation (ICC). Data was from 7 participants. 

4. Discussion 

OCT angiography is a new imaging approach to visualizing CNV. Herein, we proposed an 

algorithm for CNV area quantification which involves 4 main steps: (1) minimize projection 

artifacts in the outer retinal angiogram by subtracting the inner retinal vessel pattern; (2) 

identify the CNV area by a context-aware saliency model based on brightness, orientation, 

and position information; (3) enhance the saliency map by nonlinear filtering; and (4) 

calculate CNV area from flow pixels within the CNV boundary. We showed that the proposed 

algorithm could detect and quantify the CNV in neovascular AMD cases with a variety of 

CNV patterns. The saliency algorithm agreed with expert human grading much better than the 

previous automated algorithm. The previous algorithm had a notably high false negative rate 

of 0.826 (Table 1) because the steps of subtracting large inner retinal vessel projection and 

thresholding also removed flow signal in the CNV. Identification of the CNV through the 

saliency map helped to restore the outline of the CNV after removal of projection artifact. 

The previous algorithm had worked well using OCT angiography obtained using a 1050 

nm swept-source OCT system. The projection artifact from the inner retinal vessel onto the 

outer retina was much sparser at the longer wavelength [15], and consisted of mainly a large 

vessel pattern, therefore the CNV pattern was not as severely disrupted by the projection 

artifact. In the 840 nm spectral domain OCT system employed in the current study, the 

shadow cast by the inner retinal vessels was much stronger due to the shorter wavelength. 

Therefore the projection artifact included not only larger retinal vessels but also fine capillary 

patterns. The removal of this much denser projection artifact disrupted the CNV pattern much 

more severely. Therefore the saliency map was needed to restore the CNV outline. The 

Gaussian filter and thresholding employed by the previous algorithm were not adequate to the 

task. Figure 5 illustrates the problem with dense inner retinal projection. Both the subtraction 

of all projection artifacts and the saliency map steps were necessary to obtain a clean outline 

of the CNV. 

 

Fig. 5. (A1) Original outer retinal angiogram. (A2) Outer retinal angiogram with inner retinal 
large vessel subtracted leaving motion artifacts and small vessel projections. (A3) Outer retinal 

angiogram with both large and small retinal vessels subtracted. (B1) Saliency map computed 

from A1 shows the CNV outline but is contaminated with large retinal vessel pattern. (B2) 
Saliency map computed from A2 shows CNV outline but is cluttered with a background haze. 

(B3) Saliency map computed from A3 shows a clean CNV pattern. (A1 to A3) The display 

scale of decorrelation values ranges from 0.025 to 0.25. 
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Due to the vessel pattern of CNV also projecting onto deeper structures, we and others 

have noted that CNV could also be identified from the choriocapillaris or inner choroidal 

angiograms [17, 31]. In a healthy eye, the choriocapillaris typically shows nearly confluent 

flow. In cases of neovascular AMD, the CNV pattern in choriocapillaris angiogram (Fig. 

4(F)) can be quite similar to what is observed in the outer retinal angiogram. In addition, it is 

often surrounded by a negative halo of reduced flow, which may be useful in highlighting the 

CNV pattern in relief. Automated CNV quantification in the choriocapillaris angiogram is 

likely possible using the saliency algorithm, but alternative strategies that make use of the 

negative halo may be worth exploring. 

While the saliency algorithm was effective at quantifying CNV in this small group of 

participants, additional studies with a larger number of participants with CNV are needed. The 

algorithm needs to be tested in participants with highly reflective pathologies such as drusens 

or exudate, which could potentially accentuate projection artifacts and fool the algorithm into 

false positive identification of CNV [32]. Beyond computing CNV area in eyes known to 

have CNV, the algorithm could also be used to distinguish eyes with CNV from both healthy 

eyes and eyes with non-neovascular AMD. Longitudinal studies to monitor the CNV or track 

its change in response to treatment would also be valuable. 

5. Conclusion 

We developed a saliency-based automated algorithm to identify CNV on outer retinal 

angiograms. The algorithm removed inner retinal vessel projection artifacts, and identified a 

clean outline of CNV using a saliency model based on intensity, orientation, and position 

information. Results from the algorithm agreed well with results from manual delineation of 

CNV by both visual inspection and quantitative metrics. 
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