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Optical coherence tomography angiography (OCTA) is a noninvasive approach that can
visualize blood vessels down to the capillary level. With the advent of high-speed OCT and
efficient algorithms, practical OCTA of ocular circulation is now available to ophthalmologists.
Clinical investigations that used OCTA have increased exponentially in the past few years.
This review will cover the history of OCTA and survey its most important clinical
applications. The salient problems in the interpretation and analysis of OCTA are described,
and recent advances are highlighted.
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Optical coherence tomography (OCT) is a noninvasive,
depth-resolved imaging technique based on low-coher-

ence interferometry. Optical coherence tomography generates
structural images of anatomy based on back-reflected light. In
the quarter-century since its inception,1 OCT has seen rapid
and wide adoption in ophthalmology. Improvements in
sensitivity, acquisition speed, and resolution2 have enabled
volumetric imaging of ocular structures with micrometer-scale
depth resolution. Although conventional structural OCT aids
the clinician in visualizing the anatomic changes that impact
vision, it offers poor contrast between small blood vessels and
static tissue in most retinal layers. As a result, structural OCT is
not used clinically to identify vascular changes such as capillary
dropout or pathologic new vessel growth in AMD and diabetic
retinopathy that can lead to vision loss.

To visualize vascular changes, the most commonly used
angiographic techniques in clinical practice are fluorescein (FA)
or indocyanine green angiography (ICGA). Fluorescein is
typically used to visualize the retinal vasculature, while ICGA
is used to see the choroidal vasculature. While useful, they
require intravenous dye injection, which is time consuming and
can have adverse side effects.3,4 In addition, dye leakage and
staining blur the boundaries of capillary dropout or neovascu-
larization. Finally, these techniques provide little depth
information due to the two-dimensional (2D) nature of the
acquired images.

In order to develop a no-injection, dye-free method for
visualizing ocular vasculature, a number of functional exten-
sions of OCT has been explored. These techniques aim to
contrast blood vessels from static tissue by assessing the
change in the OCT signal caused by flowing blood cells. These
intrinsic contrasts can be broadly classified as Doppler shift
and speckle variance/decorrelation. This review will provide a
historic overview of OCTA techniques based on these
principles of flow detection. It will furthermore highlight
the developments in post-processing and visualization tools
that aid clinical interpretation. We want to emphasize that
while Doppler OCT and certain implementations of OCTA

both use phase information, the fundamental goals of Doppler
OCT and OCTA are different. Doppler OCT uses the Doppler
phase shift to quantify blood flow in larger vessels and
measure total retinal blood flow,5 an application that we will
not review, while OCTA is more concerned about separating
moving scatters from static background tissue to create
angiograms.6

LABEL-FREE ANGIOGRAPHY

For more than half a century, scientists, engineers, and
clinicians have collaborated to devise technologies to visualize
and quantify changes in the retinal and choroidal vascular
networks that supply the eye. Techniques such as ultrasound
color Doppler imaging, laser Doppler velocimetry, laser speckle
assessment, and blue field entopic technique have provided
valuable insights into retinal physiology, but have not seen wide
clinical use.7 The limitations of these approaches include
difficulty of use, poor reproducibility, large population variation
in blood flow parameters, or limited availability of single-use
instruments. Because OCT systems are widely used in
ophthalmology, its application to blood flow visualization and
measurement could make clinical use more practical. Since the
early days of time-domain OCT, Doppler OCT has been
explored as a tool for blood flow imaging. Doppler OCT uses
the flow-induced Doppler phase shift between adjacent A-scans
to calculate axial velocity.8,9 Although Doppler OCT could
measure and quantify blood velocity in larger vessels (Fig.
1A),10 it is not well suited for angiography of retinal and
choroidal microvasculature, where vessels are nearly perpen-
dicular to the OCT beam.

Due to the slow speed of time-domain systems and the
challenge posed by eye motion, volumetric angiography was
not feasible until development of the two Fourier-domain OCT
implementations11–13: spectral-domain (SD-OCT)14,15 and
swept-source.16,17 When first introduced, Fourier-domain OCT
already had a roughly 50-fold improvement in acquisition speed
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over time-domain OCT. In 2006, Makita et al.18 used an 18.7-
kHz SD-OCT system to perform volumetric angiography and
visualization of retinal and choroidal vasculature. As noted by
Makita et al.,18 the standard deviation/variance19 or power20,21

of the Doppler signal provided better results than the Doppler
shift. Another approach called optical microangiography
(OMAG) incorporated the amplitude of the OCT signal in
addition to phase. An et al.22 suggested that OMAG was better
able to identify the microvasculature than previous methods
utilizing only phase information.

With the continued improvement of OCT system speeds
due to hardware advances, methods for OCTA shifted from
comparing between adjacent A-scans to between sequential
cross-sectional B-scans. The increased time separation ensured
that slower flow in the microvasculature would be detected. In
2009, Fingler et al.23 used a 25-kHz SD-OCT system and a phase
variance approach over 10 repeat B-scans at the same location
to show microvasculature that was analogous to FA in human
eyes. In 2011, Kim et al.24 used a 125-kHz SD-OCT system to
image with a larger field of view. They used montaging/
stitching of 10 volumes to generate an OCT angiogram with
coverage comparable to FA.

While phase-based approaches have been successful,
they required precise removal of background phase noise
due to bulk tissue motion or from system instabilities. Within

an OCT system, phase noise can arise from scanning mirrors
or a swept-source laser.25,26 Although several methods exist
to compensate for phase noise20,27,28 and improve system
phase stability,29–32 an alternative is to use the variation in
amplitude or intensity of the OCT signal to detect flow
instead.

Optical coherence tomography angiography based on
amplitude or intensity was initially described in 2005, when
Barton et al.33 adapted laser speckle analysis for time-domain
OCT. Speckle arises as a property of the interferometric
nature of OCT, and speckle variation contains information
regarding the motion of scatterers.34,35 Specifically, the
speckle pattern stays relatively constant over time for static
objects while the pattern changes for objects in motion.
Mariampillai et al.36 extended the technique and presented
speckle variance detection of microvasculature in a dorsal
skinfold model using a swept-source OCT system in 2008. In
their work, speckle variance was calculated as the variance of
the OCT reflectance amplitude over three repeated B-scans at
the same location. In optimizing the method, Mariampillai et
al.37 noted in 2010 that the B-scan rates for repeat scans
needed to be fast enough such that bulk motion between B-
scans was less than the OCT beam waist radius.37 Although
‘‘speckle variance’’ has been historically associated with
amplitude-based OCTA, fundamentally both amplitude and
phase-based flow detection are based on variation in the
speckle pattern and therefore provide largely equivalent
information.38 In addition to speckle variance, another
intensity-based OCTA approach was termed correlation
mapping.39 In correlation mapping OCTA, cross-correlation
of a grid on adjacent B-scans was performed to identify
vasculature (weak correlation) versus static tissue (strong
correlation).

Optical coherence tomography angiography of retinal
microvasculature in the human eye using methods based on
amplitude or intensity was demonstrated in 2012. Motaghian-
nezem et al.40 used logarithmic intensity variance and
differential logarithmic intensity variance to capture the
microvascular network near the fovea. In addition, Jia et al.41

developed an efficient signal processing algorithm called split-
spectrum amplitude-decorrelation angiography (SSADA). Split-
spectrum amplitude-decorrelation angiography sacrificed axial
resolution by splitting the OCT signal into different spectral
bands to increase the number of usable image frames without
increasing scanning time or decreasing scan density. When
spectrally-split amplitude-decorrelation images were com-
bined, the flow signal-to-noise ratio was increased (Fig. 1B).
After optimization,42 SSADA was able to produce angiograms of
retinal and choroidal vasculature with only two consecutive B-
scans.

As a quick summary of the different OCTA methods, we
have simplified and classified the aforementioned as well as a
few more recently developed methods in the Table. The
methods are classified based on use of Doppler shift or speckle
variance/decorrelation and whether they use full-spectrum or
split-spectrum processing.

While each OCTA method can compensate for bulk tissue
motion within a B-scan,20,27,28,41 saccadic eye motion
between B-scans could disrupt vessel continuity and reduce
the quality of the final angiogram. Different approaches have
been explored to address this issue. Because motion in two
consecutive scans will be different, registering multiple scans
is a potential solution. Orthogonal registration of one x-
priority and one y-priority scan has been demonstrated to
reduce motion artifacts.47 Alternatively, incorporating eye
tracking with the OCTA scan can minimize motion artifacts as
well.48

FIGURE 1. (A) The first demonstration of blood flow imaging in the
living human eye with OCT. B-scan image of central vessels superior to
the optic nerve head with Doppler shift signal (false color) overlaid on
structural OCT (gray scale).10 Reprinted with permission from
Yazdanfar S, Rollins AM, Izatt JA. Imaging and velocimetry of the
human retinal circulation with color Doppler optical coherence
tomography. Opt Lett. 2000;25:1448–1450. � 2000 Optical Society of
America. (B) Amplitude-decorrelation angiography of the macula (3 3
3–mm area) using full-spectrum (left) and split-spectrum processing
(right). En face angiograms represent the maximum flow projection in
the inner retina slab. Split-spectrum processing reduced noise and
improved visualization of the retinal vascular network.
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PATHWAY TO CLINICAL USABILITY

The interest in OCTA has grown dramatically in the past few
years. This was aided by technology transfer of SSADA and an
orthogonal registration approach47 to Optovue, Inc., who then
worked quickly to implement and make OCTA available as a
research tool to the wider ophthalmic community on their
commercial, SD-OCT platform. These events spurred Carl Zeiss
Meditec, Inc. to adapt OMAG for their eye-tracking enabled SD-
OCT system as well as other OCT companies to incorporate
OCTA in their systems. Interpretation of OCTA, however, relies
heavily on software to improve ease of use and facilitate
analysis of collected data (Fig. 2). Methods and approaches to
segment retinal layers for en face display and generate
multicolor composite angiograms, which combine flow
information from several en face slabs or combine flow and
structural data will be reviewed.

En Face Visualization of Segmented Tissue Slabs

While OCT started as a predominantly cross-sectional imaging
modality, OCTA was clinically used as an en face imaging
modality from the start. This was enabled by initial work
establishing the en face approach.49–52 Optical coherence
tomography angiography uses previously established tech-
niques for automated segmentation of anatomic reference
planes53–55 such as the inner limiting membrane (ILM) and
Bruch’s membrane (BM). Appropriate tissue layers or ‘‘slabs’’
can then be defined based on these references planes. En face
presentation of these slabs can produce angiograms similar to
FA or ICGA.

Accurate segmentation is important for clinical interpreta-
tion. In diseased eyes, pathologies such as drusen, intraretinal
cysts, edema, or subretinal fluid can make automated
segmentation less robust. Although significant improvements
have been made,56–58 expert manual correction is sometimes
necessary. Software that aids or reduces the workload required
for manual correction of volumetric data is beneficial.58,59

Color Coding of Vessel or Slab Depth

Color coding is a common method used to convey additional
information. In OCTA, color could be used to convey depth
relative to a simple reference plane.24 More often, color was
used to represent flow in different segmented tissue
slabs.18,60 This allowed for clear visualization of retinal
circulation in the inner retinal slab (between ILM and the
outer boundary of the outer plexiform layer [OPL]) and
choroidal circulation in the choroidal slab (below BM) on one
angiogram. This division could be further refined, with
retinal circulation divided between two or more plexuses
and choroidal circulation divided into the choriocapillaris
and deeper choroid. Abnormal vessels could also be
visualized this way, with choroidal neovascularization
(CNV; Fig. 2) seen in the outer retinal slab (between the
outer boundary of OPL and BM) and retinal neovasculariza-

tion in the vitreous slab (above ILM).61,62 Furthermore, color
coding can also be used to overlay flow information on
structural OCT B-scans (Fig. 2).

CLINICAL APPLICATIONS

In OCTA, diseases manifest as the abnormal presence of flow
(neovascularization), anomalous vessel geometry (dilated
vessels, aneurysms), or the absence of flow (nonperfusion/
capillary dropout). These three types of abnormalities exist in
almost all retinal and choroidal vascular diseases. Therefore,
OCTA is widely applicable even though it cannot detect dye
leakage or staining, which are the primary abnormalities
detected by FA. In traditional dye-based angiography, retinal,
choroidal, and abnormal circulations are all flattened into one
2D image. In contrast, OCTA data is three-dimensional (3D)
and can be visualized in finely divided tissue slabs, which aid in
the detection of pathologies.

Beginning in the vitreous, retinal neovascularization
protruding above the ILM has been visualized in cases of
diabetic retinopathy.62,64,65 In the inner retina, retinal
capillary dropout has been observed in diabetic retinopa-
thy,62,64–66 artery occlusion,67,68 vein occlusion,67,69,70 and
glaucoma.71 Enlarged foveal avascular zone has been de-
scribed in diabetic retinopathy as well.72–74 Additionally,
observations regarding anomalous vascular formations such
as macular telangiectasia75–77 and microaneurysms in diabetic
retinopathy64,66 have been reported. Visualization of the deep
retinal capillary plexus has provided new information
regarding impaired flow in diseases such as retinal arterial
occlusion68 and paracentral acute middle maculopathy.78

More posteriorly is the outer retina between the outer nuclear
layer and BM This slab is used when assessing CNV.61,65,79–84

Neovascularization has also been described in polypoidal
choroidal vasculopathy,85,86 pachychoroid neovasculop-
athy,87 and central serous retinopathy.88–90 Classification of
CNV into type I, II, and/or III can be aided by use of
composite structure and flow cross-sectional scans.61

Below BM at the choriocapillaris or choroid, capillary
dropout has been assessed in choroideremia65 and in areas of
geographic atrophy in dry AMD.65,91,92 In most cases of
neovascularization, the abnormal vessels can be seen at these
deeper layers as well due to the projection artifact. Therefore,
CNV can also be visualized in the choroidal slabs.

Within the optic nerve head, perfusion has been investi-
gated in cases of glaucoma93 and multiple sclerosis.94

In summary, clinical investigations of OCTA have already
demonstrated its potential in a wide variety of retinal and optic
nerve diseases.

ARTIFACTS

Although OCTA shows great promise, interpretation of OCTA
must be done with knowledge of the possible image
artifacts.95–97 Motion error and improper software correction

TABLE. Simplified Summary of the Different Implementations of OCTA

Doppler Shift

Speckle Variance or Decorrelation

Amplitude or Intensity Phase Complex

Full spectrum Doppler8–10 Speckle variance33 Phase variance19,23 OMAG43,44

Split spectrum Doppler45,46 SSADA41,42 SSPGA* SSAPGA*

SSPGA, split-spectrum phase-gradient angiography; SSAPGA, split-spectrum amplitude and phase-gradient angiography.
* Liu G, Jia Y, Chandwani R, Pechauer AD, Huang D. Phase-gradient optical coherence tomography angiography. Denver, Colorado, May 2, 2015.

ARVO Imaging in the Eye Conference.
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can lead to vessel duplication, residual motion lines, and vessel
discontinuity. Optical coherence tomography angiography also
suffers from shadowgraphic flow projection artifacts (Fig. 2),
which arise from fluctuating shadows cast by flowing blood
that result in variation of the OCT signal in deeper layers. This
is particularly apparent in angiograms of the outer retina. Inner
retinal vessel projections on the highly reflective RPE in the
outer retina produce false positive signal, which can interfere
with CNV identification. Masking larger inner retinal vessels61

or all inner retinal vessels63,98 can help. The flow signal at areas
with high or low OCT reflectance signal also need to be viewed
with skepticism. Structures with high OCT reflectance such as

hard exudate appear to amplify the signal from motion or
projection artifact.99 On the other hand, the lack of flow signal
may be a result of shadowing and low OCT reflectance instead
of true nonperfusion. Phantom studies looking at the
relationship between flow and OCT signal amplitude may
prove insightful.100

QUANTIFICATION

Objective quantification of flow information is of great interest
with regards to disease diagnosis and management. Two

FIGURE 2. Segmentation and processing of OCTA. Optical coherence tomography angiography was performed on a 70-kHz SD-OCT with a center
wavelength of 840 nm and axial resolution of 5 lm in tissue. (A) The volumetric OCTA scan comprised 304 cross-sectional frames along the slow
scan axis. Flow in each frame was computed using the SSADA algorithm. The cross-sectional angiogram shows blood flow (color) overlaid on
structural OCT (gray scale). It shows that flow in inner retinal vessels (purple) are projected onto the RPE complex (indicated by white arrows) –
this is called ‘‘flow projection artifact.’’ Image processing software separates the vitreous, inner retinal layers, outer retinal layer, and choroidal layers
along the ILM and outer boundaries of the inner plexiform layer (IPL), OPL, and BM (dotted green lines). Maximum flow projection or mean
reflectance projection was used to produce en face images. (B) The vitreous angiogram shows the absence of vascular flow. (C) The superficial
inner retinal angiogram shows normal retinal circulation with a foveal avascular zone. Residual motion artifact in the form of a horizontal line is
seen near the top of the angiogram. (D) The deep inner retina angiogram shows the deep retinal plexus. (E) The outer retina slab shows choroidal
neovascularization (CNV) along with flow projection artifacts cast by the retinal circulation. (F) The choriocapillaris angiogram. (G) The deeper
choroid en face structural OCT. (H) Detection of the CNV using a saliency-based approach.63 (I) Composite en face angiogram of the inner retina
(purple) and CNV (yellow).
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straightforward metrics that can be calculated from en face
angiograms are flow index and vessel density.93 Flow index is
calculated as the average flow signal (which is correlated with
flow velocity101) in a selected region, and vessel density is
calculated as the percentage area occupied by vessels and
microvasculature. Initial studies suggest that these metrics can
have good repeatability and reproducibility.71,102,103

To more directly assess capillary dropout and neovascular-
ization, however, additional metrics have been investigated.
Capillary dropout or nonperfusion area refers to significant
area (larger than the normal gap between capillaries) devoid of
flow signal that would normally be vascular.65 In the inner
retina, detection of capillary dropout together with vessel
density and/or flow index quantification has applications in
diseases such as diabetic retinopathy,65,103 glaucoma,71 and
optic neuritis.94 In the choriocapillaris, assessing dropout
would be important for AMD65,91,92 and retinal degenerative
diseases such as choroideremia.65 Other approaches to
assessing abnormal flow regions include characterization of

the fractal dimension of vessel lines104 and perfusion density
mapping.105

Neovascularization area is the sum of pixel areas in a
pathologic neovascular net identified on the en face OCT
angiogram.61 In proliferative diabetic retinopathy, the area is of
neovascularization above the ILM or optic nerve head.62,64 In
neovascular AMD and other causes of CNV, the area of
neovascularization is in the outer retina.61,63 Other qualitative
and quantitative metrics to describe the morphology of the
CNV are also being explored.81,82

Quantitative metrics derived from OCTA have the potential
to serve as new biomarkers of disease. However, well-designed
validation studies and studies to determine repeatability and
reproducibility are currently lacking. As OCTA research
progresses, this will likely change. Although, validation studies
may be difficult in cases where another noninvasive method is
not available – for example, in the case of visualizing
choriocapillaris.

FIGURE 3. A case of central serous chorioretinopathy (CSCR). (A) Early-phase FA showing leakage. (B) Late-phase FA showing staining. However,
FA could not determine whether the leakage was due to CSCR or secondary CNV. (C) A 3 3 3–mm en face spectral OCTA of the boxed region in
panel A. (D) Cross-sectional OCTA corresponding to the green line in panel C. Optical coherence tomography angiography revealed flow
beneath the RPE consistent with type 1 CNV. Optical coherence tomography angiography was useful in making the decision to treat this patient
with anti-VEGF.
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DISCUSSION AND FUTURE DIRECTIONS

Optical coherence tomography angiography is one of the
most promising functional extensions of OCT. Despite its
recent introduction, the potential clinical impact of OCTA
can already be felt. A number of novel findings were made
possible with OCTA. In AMD, OCTA could fully visualize CNV
that are occult (poorly visualized) on FA. Interestingly, OCTA
was able to identify a class of nonexudative CNV, which
neither leak on FA nor exude retinal fluid on structural
OCT.92,106,107 The natural history and proper management of
this new type of CNV is under investigation. Optical
coherence tomography angiography is also able to visualize
the closure of branch CNV vessels after anti-VEGF injection
and their reopening/remodeling over time.108,109 Rebound of
CNV vessel area can precede fluid reaccumulation83 and may
be helpful for guiding the timing of therapy. In central serous
chorioretinopathy, OCTA can more reliably determine the
presence of CNV, which can be difficult to assess with FA
(Fig. 3).89 This is useful in identifying those who would
benefit from anti-VEGF therapy. In diabetic retinopathy,
OCTA can visualize small retinal neovascularizations into
the vitreous which may be confused as microaneurysms on
FA.62 Optical coherence tomography angiography is uniquely
capable of detecting capillary dropout in the different
vascular plexuses in the inner retina, which may be useful
in diagnostic or prognostic evaluation of diabetic retinopa-
thy, vein/artery occlusion, and other ischemic diseases.
Furthermore, the depth-resolved nature of OCTA improves
visualization and localization of pathologic features. This has
been particularly useful in diseases that were previously
difficult to diagnose or classify using FA and ICGA. For
example, in macular telangiectasia, retinal microvascular
abnormalities and vascular anastomosis with subretinal
neovascularization and choroidal circulation can now be
visualized with OCTA.77,110

While OCTA has distinct advantages over FA and ICGA, it
has its own set of limitations. Unlike FA, OCTA does not
assess leakage. This is an advantage for OCTA during
quantification as leakage can blur boundaries, but leakage
gives additional information with regards to the integrity of
the vasculature. Additionally, widefield FA is clinically

available while widefield OCTA is limited to ultrahigh-speed
laboratory prototypes at the moment. Going forward, we
expect to see continued advances in hardware and software,
which should expand the field of view of OCTA. Because at
least two repeat scans are required for motion contrast, OCTA
will inherently require more time than simple structural
scans. As a result, current system speeds restrict the field of
view or alternatively limit the transverse sampling density.
Faster systems based on swept-source OCT technology
coupled with improved eye tracking48 or registration48 is a
potential solution. Montaging of multiple scans is also
possible (Fig. 4).24,111,112 As scans extend more peripherally,
however, dynamic focusing113 and increased imaging depth
range114 are needed to compensate for the increased
curvature of the retina.

This interest in faster systems has led to discussions of the
differences between SD-OCTA and swept-source OCTA. Direct
comparisons are, however, difficult due to differences in the
speed, which affects the sensitivity of flow detection, and
operating wavelengths, which affects light scattering and
penetration as well as resolution, of typical systems. While
these differences can contribute to differences in the resulting
OCTA angiograms, they are not inherent to the technologies
themselves. The only intrinsic different between these two
Fourier-domain OCT implementations is that SD-OCT is more
susceptible to interferometric fringe washout artifact,25 which
is apparent only in large retinal vessels in the central optic
nerve head.

The 3D nature of OCTA is both a blessing and a curse. The
large 3D image cube needs to be segmented for detection and
quantification of pathologies. And the clinician may need to
scroll through many tissue layers to locate the pathology.
Improvements in automated computer software for anatomic
segmentation, pathology detection, and quantitation will make
OCTA easier to use. In conjunction, there is a need for
improved algorithms to reduce projection, shadow, and motion
artifacts that often make OCTA difficult to interpret. This is an
area of active research and rapid development. For example,
advanced algorithms to remove shadowgraphic projection
artifact115 can already resolve three distinct retinal plexuses in
the macula (Fig. 5).

FIGURE 4. Ultra-widefield OCTA (~20-mm width, 10-mm height, 7-mm depth) of the retinal circulation generated by montaging four scans from a
200-kHz swept-source OCT system.
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Because OCTA is economical, noninvasive, and does not
even require the use of bright visible light, it can be used more
frequently than traditional angiography, which requires intra-
venous dye injection. Thus, we expect that OCTA could be
used for high-volume applications such as the routine
screening of diabetic retinopathy and regular follow-up of
AMD. With the technological improvements that can be
foreseen in the near future, we believe OCTA will become an
important part of standard eye care.
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