OCT Angiography

OAO 2017 Annual Symposium
KEYVAN KOUCHAN MD FRCS(C) OBO
TORONTO RETINA INSTITUTE
MISSISSAUGA RETINA INSTITUTE
MT. SINAI HOSPITAL
UNIVERSITY OF TORONTO

SPECIAL THANKS TO DR. DAVID CHOU

Financial disclosures:
Advisory board: Alcon, Novartis, Bayer
Research grant: Bayer

OCT Angiography

NON-INVASIVE MICROVASCULAR ENHANCED IMAGING TECHNOLOGY

Intrinsic motion of RBC’s in the vessels imaged in space over time
Functional assessment of vasculature
En Face projections used to view
NO CONTRAST MEDIUM injected
3D depth resolved images

SSADA (Split Spectrum Amplitude Decorrelation Angiography) algorithm
Spectral Domain OCT system
En Face 3d Visualization
Motion Correction technology

Motion Contrast used to image the flow in retinal vasculature

PRINCIPLES OF OCT ANGIOGRAPHY
Visualizing flow through motion contrast

FLOWING WATER CAN BE DISTINGUISHED FROM A STATIC BACKGROUND BY COMPARING SEQUENTIAL VIDEO FRAMES TO HIGHLIGHT MOTION

 MOTION CONTRAST IS SIMILARLY USED IN OCT ANGIOGRAPHY TO DISTINGUISH BLOOD FLOW IN THE VESSEL FROM STATIC TISSUE
OCT Angiography

Normal Macula

304 x 304 x 640 image volume scanned in ~3s

Normal Optic Disk

304 x 304 x 640 image volume scanned in ~3s
OCT Angiography

EN FACE Visualization - Segmentation of Cube

Can be automated or manual adjusted!

- Superficial capillary
- Deep capillary
- Outer Retina
- Choriocapillary

OCT Angiography

EN FACE Visualization - Auto Segmentation Settings

Superficial Retinal Vascular Plexus

Consistent with our typical view on fluorescein angiography

Diabetic retinopathy, retinal artery and vein occlusions

OCT Angiography

EN FACE Visualization - Auto Segmentation Settings

Deep Retinal Vascular Plexus

Brand new area of imaging

Traditional FA showed smudgy leakage but no details

Affected in many conditions but may be primary site of pathology in MAC TEL or RAP

OCT Angiography

EN FACE Visualization - Auto Segmentation Settings

Outer Retina

Brand new area of imaging

Chosen to look at specifically as it is avascular in normal humans

Vascularization is always pathology!

Will be useful to specifically look for CNVM above the RPE, RAP lesions, etc.
OCT Angiography

En FACE visualization - auto segmentation settings

Choriocapillaris

Primary site of pathology in ARMD, mCNV

OCT Angiography

Angioflow Image: Field size 8-6-3 mm with AngioVue

8x8 6x6 3x3

OCT Angiography

En FACE visualization - auto segmentation settings

Optic Disk

- Vitreous
- Radial Peripapillary Capillaries
- Superficial Retinal Vascular Plexus
- Deep Retinal Vascular Plexus

Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography

Richard F. Spaide, MD; James M. Klineciv Jr, MD; Michael J. Cooney, MD

JAMA 2015

What % of our traditional FA vasculature is represented by the inner retinal plexus?

95%
Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography

RADIAL PERIPAPILLARY CAPILLARIES WELL APPRECIATED WITH OCTA NOT FA

mCNV?, wAMD?, CSR?

66F distorted vision OS x 2 mo
20/30 OD, 20/100 OS
Past Dx of CSR OU
h/o myopia s/p CE/IOL OU
61 F slightly blurred OU
20/40 OU
Borderline DM
telangiectatic vessels temporal to fovea OU
- M poor vision OD x yrs; recently worse
- 20/25 OD
- No remote macular laser OD ~ 20 yrs ago

CSR vs CNV?
Summary

OCTA uses multiple OCT B scans to deduce movement of RBCs in blood vessels.

Algorithms such as SSADA improve image quality.

En face technology allows segmentation of superficial retinal vessels, deep retinal vessels, outer retina, and choriocapillaris.

OCTA allows visualization of PP vessels: implications for glaucoma management?

Strengths: detection of CNV, mac ischemia, telangiectasia

Drawbacks: prone to errors, lack of leakage info, limited to poster pole