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Diabetes is one of the most common diseases in the world 
and affects about 6% of the world’s population. The 
estimated cases of diabetes will keep on rising and almost 
double in year 2030 compared to year 2000. There will 
be 30 million diabetic patients in USA and more than  
40 million in China in 2030 (1). Diabetic retinopathy (DR) 
is one of the most common complications of type 1 or type 
2 diabetes. According to WHO 2002 census, 1.8 million 
blindness cases have been reported due to DR (2). 

DR is the most common cause of blindness in the 
working-age population (3). Therefore, the early diagnosis, 
prompt prevention and treatment are very important 
for patients with DR. According to the severity and 
clinical progress, DR can be graded into two periods, 
nonproliferative diabetic retinopathy (NPDR) and 
proliferative diabetic retinopathy (PDR) characterized 
by the presence of neovascularization (4). Monitoring 
the severity scales of DR guides treatment and indicates 
prognosis. 

Rise of OCT angiography

The grading of DR severity can be based on certain fundus 
images and the pathological changes of DR are now better 
visualized than before. As we all know, fundus photography 
(FP) is most commonly used to grade DR severity 
(ETDRS study). It is easy, cheap, non-invasive, but fails 
to show vessel leakage and nonperfusion area. Fluorescein 
angiography (FA) can visualize leakage, nonperfusion and 
vessel abnormalities to guide treatments. However, FA is 
invasive and requires intravenous dye injection, which can 
cause anaphylaxis side effects. 

Optical coherence tomography (OCT) provides instant, 
depth-resolved and direct imaging of live eye tissue based 
on low-coherence interferometry. Without ionizing 
radiation, OCT has been widely used to obtain detailed 
morphology of the retina (5). However, it cannot display 
and identify retinal vascular abnormalities.

In order to visualize vascular structures, many techniques 
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have been devised to measure blood flow, such as ultrasound 
technique, blue field entoptoscopy, and laser Doppler 
velocimetry (6,7). However, these techniques are restricted 
for widely clinical use because of the poor reproducibility, 
difficulty of application and large variation in parameters 
of blood flow among human beings. Considering the 
commonly use of OCT system in ophthalmology, 
researchers have improved contrast to identify the signal 
of blood flow from periphery tissues and explored the 
traditional OCT to the OCT angiography (OCTA) 
successfully. OCTA not only inherits the non-invasive 
depth-resolved features in living tissues with high resolution 
of traditional OCT, but also can identify retinal vascular 
abnormalities which traditional OCT is unable to do (8).

The intrinsic principles of OCT angiography are based 
on complex OCT signal, amplitude of OCT signal, or phase 
of OCT signal (9,10). Angiography of complex OCT signal 
is captured by the related changes between signal frequency 
and phase, mainly by the Doppler Effect and backscattering. 
An algorithm called optical angiography (OAG) technique, 
and later an algorithm known as ultrahigh sensitive 
optical microangiography (OMAG) have been developed 
to distinguish blood flow from background (11,12); By 
analyzing the spatial and temporal statistics of speckle 
patterns, Enfield et al. (13) have proposed an intensity-
based algorithm called correlation mapping to differentiate 
vessels from static tissues. Another algorithm named split-
spectrum amplitude-decorrelation angiography (SSADA) 
is proposed by Jia et al. to improve signal-to-noise in the 
axial direction (14). Flow information can also be obtained 
by calculating differences in phase between consecutive 
scans, so the use of phase variance between adjacent B-scans 
has been made in an OCTA system with an A-scan rate of 
25kHz to the analysis of vessel structures (15). To reduce 
eye motion artifacts and increase the scanning area, a faster 
A-scans rate system has been proposed to OCTA (16). 

OCTA is used as an en face imaging modality in 
clinical practice (17), similar to the presence of FA and 
indocyanine green angiography (ICGA), but it can visualize 
3-dimensional image sets of vascular plexuses at different 
depths from internal limiting membrane (ILM) to choroid. 
In most studies, OCTA is used to segment retinal capillary 
network into two parts, the superficial capillary plexus (SCP) 
in the level of retinal nerve fiber (NFL) and deep capillary 
plexus (DCP) in the level between inner nuclear layer 
(INL) and outer plexiform layer (OPL) (18). When needed, 
different layers of choroidal vasculature are also able to be 
clearly visualized by OCTA (19,20), while these different 

layers of choroidal vasculature could not be displayed by 
ICGA.

Compared  to  OCTA,  the  in t ravenous  fundus 
angiography such as FA and ICGA has the risk of causing 
allergic adverse effects during intravenous injection 
(21,22), and cannot display the details of the deep vessel 
structures (23). Therefore, OCTA offers a relatively safe, 
easy and less time-consuming method to generate stratified 
vascular structural images (9,24). OCTA has been used to 
detect many fundus vascular abnormalities now, including 
retinal vein occlusion (RVO) (25), exudative age-related 
macular degeneration (AMD) (26), polypoidal choroidal 
vasculopathy (PCV) (27), and diabetic retinopathy (DR) (28). 
In this review, we summarize the use of OCTA in detecting 
most vascular abnormalities in DR, such as microaneurysms, 
nonperfusion, and neovascularization (29). 

Applications of OCTA in diabetic retinopathy

Due to heterogeneity among human beings, the exact 
segmentation criterion of SCP and DCP varies from 
different studies. The vessel layer between 3 μm beneath the 
ILM and 15 μm beneath the INL is usually considered as 
SCP, and the vessel layer between 15 μm beneath the INL 
and 70 μm beneath the INL is considered as DCP (24,30). 
Park et al. (31) have found the middle capillary plexus (MCP) 
between SCP and DCP is qualitatively and functionally 
distinct from SCP and DCP in patients with DR. However, 
this MCP is not widely adopted yet.

Display of microaneurysms

Microaneurysms are identified as focally dilated and 
abnormally shaped capillaries in SCP and/or DCP in OCTA 
images (30,32). Because information in depth is unable 
to be precisely displayed in FA, researchers have utilized 
OCTA to identify the distribution of microaneurysms and 
found that microaneurysms in DCP in patients with DR are 
more than those in SCP (32,33), similar to the study result 
of donor eyes from patients with DR (34). 

The  compat ib i l i t y  be tween  OCTA and  FA in 
demarcating microaneurysms is uncertain among studies. 
Schwartz et al. (35) fail to find the complete correspondence 
in the depicted microaneurysms between FA and OCTA 
images. Some microaneurysms-like patterns observed 
in FA are not shown in OCTA, and vice versa (30,32). 
Hence, two approaches should complement each other 
to overcome their own deficiencies in demarcating 
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microaneurysms. Hyperfluorescent dots surmised to 
represent microaneurysms on FA may be small tufts of 
neovascularization extending above ILM (36), or just 
focal leakage (32). On the other hand, the process of 
recanalisation and sclerosis in microaneurysms makes 
OCTA hard to detect their flood signal by turbulence and 
slow flow (37). 

Display of neovascularization 

OCTA not only provides high-resolution imaging of 
vascular structures of neovascularization, but also reveals 
detailed information about depth. With the settings to project 
vasculature above the ILM in OCTA, de Carlo et al. (38) have 
visualized preretinal neovascularization in eyes of patients 
with PDR. The further distribution analysis proves that 
almost all the neovascularization is adjacent to retinal 
capillary nonperfusion and half occurs close to intraretinal 
microvascular abnormalities. 

OCTA is equivalent in demarcating neovascularization 
images with FA. Studies have shown that OCTA has 
the ability to detect almost all the neovascularization 
determined by FA in the posterior area of retina (39,40). 
Apart from the allowance of a better visualization than FA 
in neovascularization (39), OCTA can be easily and safely 
applied on patients consecutively to monitor the disease 
progression when frequent fluorescein dye injection is 
apparently not cost-efficient and convenient. OCTA has 
been used to quantify the changes of the neovascularization 
at the disc (NVD) in a case of 32-year-old patient with 
PDR at the time of 2 weeks, 4 weeks and 8 weeks after 
intravitreal anti-vascular endothelial growth factor (VEGF) 
injection (32), while OCTA cannot show the leakage of 
neovascularization like FA. Since OCTA is a transformative 
approach based on blood flow, the decreased activity of 
blood flow in neovascularization detected by OCTA does 
not always indicate the disappearance of its vessel structures 
(32). 

Monitor of retinal vessel density (VD) in 
perifoveal region

FA is incapable of measuring accurate deep VD. More 
details of superficial and deep retinal vessels can be clearly 
seen in OCTA images scanned in 3 by 3 mm, while, 
artifacts may confound images quality and accuracy. 
Projection artifacts, caused by encountering tissues below 
the detected vessels which refract, absorb and scatter 

the detection beam to various degrees (41), make the SCP 
images superimposed on the DCP images (42-45). It may 
also have image artifacts caused by eye emotions or poor eye  
vision (46,47). 

Using generated en face retinal vascular images by 
OCTA, researchers find that the VD of both SCP and 
DCP in perifoveal region of patients with DR is lower than 
those of normal individuals, and declines further along with 
the progress of retinopathy severity, leading a repeatable 
method at monitoring the progress of DR (43-45,48). 
Measurement of the VD also shows high reproducibility 
and repeatability. Although both SCP and DCP are affected 
in patients with DR compared with normal controls, the 
mean VD of SCP in patients with DR is significantly lower 
than that of DCP (45,48), consistent with the recent studies 
which suggest that nonperfusion area in SCP tends to be 
larger than area in DCP (30,32). OCTA makes it possible 
to assess the two main layers of the retinal capillaries 
noninvasively and easily in monitoring the progress of DR 
in patients.

Monitor of foveal avascular zone (FAZ)

Surrounded by capillaries, FAZ is a specific capillary-
nonvisible zone where central fovea provides high-
resolution vision. OCTA can display the FAZ zone more 
clearly than FA. Using OCTA, the enlargement of FAZ 
area in patients with DR has been reported in almost all the 
related studies (44,48-51) and is deduced by the degradation 
of capillaries (48,49). OCTA can be also used to assess 
longitudinal parameters of FAZ. Measurement of FAZ 
parameters (area, perimeter, circularity index) conducted by 
OCTA and FA shows no significant variance in patients with 
vascular abnormalities (including patients with DR) (52). 

However, recent studies have not found the correlation 
between the enlargement of FAZ and visual loss (46,53). 
Substantial inter-individual variance in dimensions makes 
the FAZ area not suitable for predicting visual acuity of 
patients with DR (49). 

Monitor of nonperfusion area in the posterior 
retina

Retinal nonperfusion areas can be visualized by FA or 
OCTA as capillary-nonvisible areas between the relatively 
large retinal vessels. Through measurement by OCTA, two 
independent research groups find that nonperfusion area in 
SCP tends to be larger than area in DCP (30,32). Generally, 
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OCTA is able to detect nonperfusion areas in the posterior 
area of retina identified by FA. However, some of the 
nonperfusion areas not detected on FA are better delimited 
on OCTA (30,32,43). The weighted kappa between 
conventional FA and OCTA by grading diabetic macular 
ischemia in SCP indicates a moderate agreement (49). 

OCTA allows the measurement of nonperfusion-related 
parameters in various layers. A retrospective study calculates 
the capillary perfusion density values of SCP, DCP, and 
choriocapillaris in both patients with DR and normal 
controls using the OCTA (19), and demonstrates that the 
decrease rate of perfusion density values may be related 
to the severity of DR, suggesting an objective method 
to evaluate the progress of DR (54). However, image 
acquisition area, usually scanned in 3 by 3 mm or in 6 by 6 
mm, is relatively small for the generation of nonperfusion 
area extended to the peripheral retina (32,55). 

Evaluation of diabetic macular edema (DME)

DME is characterized by fluorescein leakage from certain 
capillary areas, possibly surrounded by hard exudates (56), 
which OCTA is unable to detect. Generally, OCTA is not 
used to observe DME solely, but it has the ability to identify 
DME (57).

OCTA does not access leakage whereas FA does. 
Leakage in FA may blur the view on the one hand, but it 
could characterize DME on the other. However, OCTA 
is still capable of identifying DME, measuring retinal 
thickness like traditional OCT. What is more important, 
OCTA can additionally explore the correlation between 
DME and vessel abnormalities. The studies demonstrate 
that the mean VD in patients with DME is significantly 
lower than patients without DME (45,48). Whether DME 
is a risk factor or a result of lower VD needs a longitudinal 
study following up patients with DR by OCTA. Moreover, 
DME might be evaluated indirectly by OCTA through 
the evaluation of FAZ dimensions and nonperfusion 
areas in perifoveal region, since FAZ dimensions are 
strongly positively correlated with the severity of capillary 
nonperfusion (58,59), and macular ischemia is a risk factor 
for DME at the meantime (20,60,61).

Conclusions

OCTA is a novel and non-invasive method which can 
quickly show retinal vessel networks, nonperfusion area and 
retinal thickness with high-resolution. OCTA owns some 

important roles of both FA and OCT, and it will be a very 
promising tool for monitoring the progress of DR.
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