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Abstract: As the retinal pigment epithelium (RPE) ages, a number of structural changes occur, 

including loss of melanin granules, increase in the density of residual bodies, accumulation of 

lipofuscin, accumulation of basal deposits on or within Bruch’s membrane, formation of drusen 

(between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane), 

thickening of Bruch’s membrane, microvilli atrophy and disorganization of the basal infoldings. 

Although these changes are well known, the basic mechanisms involved in them are frequently 

poorly understood. These age-related changes progress slowly and vary in severity in different 

individuals. These changes are also found in age-related macular degeneration (AMD), a late 

onset disease that severely impacts the RPE, but they are much more pronounced than during 

normal aging. However, the changes in AMD lead to severe loss of vision. Given the many sup-

porting functions which the RPE serves for the retina, it is important to decipher the age-related 

changes in this epithelium in order to understand age-related changes in vision.

Keywords: retinal pigment epithelium, aging, age-related macular degeneration (AMD), ocular 

disorders, retinal disease

Age-related changes in the RPE
The retinal pigment epithelium (RPE) performs highly specialized metabolic and 

transport functions essential for homeostasis of the neural retina (Bok 1993). These 

include phagocytosis of photoreceptor-shed outer segments, transport of nutrients 

into and removal of waste products from photoreceptor cells and retinoid transport 

and regeneration. The RPE is a low cuboidal epithelium containing very long thin and 

sheet-like microvilli on its apical surface that project into the interphotoreceptor matrix 

where they interact with the tips of the rod and cone photoreceptor outer segments (Bok 

1993). The apical surface of RPE cells supports and carries out the diurnal phagocytic 

removal of spent photoreceptor tips. One RPE cell supports 30–50 photoreceptors, 

which shed daily ~5% of their outer segment mass (Zinn and Benjamin-Henkind 1979). 

The basal surface of RPE cells displays highly convoluted basal infoldings that attach 

to a specialized Bruch’s basement membrane, an acellular layer separating the RPE 

from the choriocapillaris. The RPE’s basal surface participates in extensive metabolic 

exchanges with the blood vessels in the underlying choriocapillaris.

An accumulation of discrete but pronounced structural changes occurs in aging 

eyes. In the aged retina, an overall thinning is apparent, due to loss of neurons from 

all the neuronal cells and also shortening of photoreceptor cells. The RPE specifi cally 

is known to undergo several structural changes, including loss of melanin granules, 

increase in the number of residual bodies, accumulation of the age pigment lipofuscin, 

accumulation of basal deposits on or within Bruch’s membrane (BM), formation of 

drusen (between the basal lamina of the RPE and the inner collagenous layer of BM), 

thickening of BM, RPE microvilli atrophy and disorganization of basal infoldings 

(Boulton and Dayhaw-Barker 2001). Some of these changes are shown in Figure 1 
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(B, D, F, H, J) and they will be discussed in detail in the 

following text. The RPE aging changes progress slowly and 

are of varying severity in different eyes.

The RPE contains two kinds of pigment, namely lipo-

fuscin and melanin. Melanin is an insoluble high molecular 

weight polymer derived from the enzymatic oxidation of 

tyrosine and dihydroxyphenylalanine, linked to proteins 

and contained in membrane-limited granules in the RPE 

melanosomes. Recently a comprehensive determination 

of the protein composition of melanosomes isolated from 

human melanoma cells was reported using proteomics (Chi 

et al 2006). The identifi ed proteins included 16 homologs to 

mouse coat color genes, many associated with human pig-

mentary diseases, pigment epithelium-derived factor (PEDF) 

and SLC24A5 (sodium/potassium/calcium exchanger 5, 

NCKX5). However, these melanosomes may be different 

Figure 1 Age-related changes in human RPE. Observation of the structural differences in RPE from young (23 year-old, A, C, E, G, I) and aged (75 and 88 year-old, B, D, F, 
H, J) human donors. Aged RPE from human donors displays loss of melanin granules (MP, arrowheads in A, E) and accumulation of the age pigment lipofuscin (Lip) (B, D), as 
observed by the presence of increased autofl uorescent granules when observed on epifl uorescence in the green channel (FITC fi lter: excitation 495 nm/emission 519 nm) in 
aged RPE (D) when compared to young RPE (C). Additional observation of the aged RPE displayed formation of drusen (D) (between the basal lamina of the RPE and the inner 
collagenous layer of Bruch’s membrane) (F), thickening of Bruch’s membrane and basal infoldings disorganization (J) when processed and analyzed by electron microscopy. In 
addition, in the aged RPE cells melanin granules are frequently seen in association with lipofuscin (melanolipofuscin, MLF) granules (H). Young RPE displays melanin pigments on 
their apical surface (A, E, G) while aged RPE contains mostly lipofuscin granules (B, H). Differential interference contrast microscopy images (A, B). Semi-thin epon sections 
stained with toluidine blue of young (E) and aged RPE (F) examined in bright fi eld.
Abbreviations: BI, basal infoldings; RPEBM, RPE basement membrane; ICL, inner collagenous layer; MEL, middle elastic layer; OCL, outer collagenous layer; EBM, choroidal 
endothelial cell basement membrane; Bars: (A to D), 10 μm; (E, F), 200 μm; (G, H), 2 μm; (I, J), 1 μm.
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from the ones present in the RPE. RPE melanin originates 

from neural ectoderm, whereas the one in melanocytes 

originates from neural crest (Feeney 1978). In aged RPE 

cells melanin granules are frequently seen in association with 

lysosomes (melanolysosomes, MLL) and lipofuscin granules 

(melanolipofuscin, MLF; Figure 1H), which suggests that 

any protein bound to melanin may be degraded. In addition, 

melanosomes may undergo photobleaching with aging, 

which can diminish the antioxidant effi ciency of melanin 

(Sarna et al 2003). Altogether, these observations suggest that 

changes in melanin granules possibly contribute to some of 

the senile changes evident in the RPE. A recent manuscript 

observed the accumulation of MLF in human RPE from 

different decades of life and assessed their phototoxicity to 

RPE cultures in vitro. The analysis of the composition of 

MLF granules suggested that, in contrast to lipofuscin, they 

do not contain photoreceptor-specifi c proteins. The authors 

suggest that MLF may not originate from photoreceptor 

outer segments phagocytosis but that MLF accumulates as 

a result of the melanosomal autophagocytosis of RPE cells 

(Warburton et al 2006).

Accumulation of secondary lysosomes and residual 

bodies containing lipofuscin, known as dense bodies, has 

been observed in post-mitotic and intermitotic cells during 

aging (Schmucker and Sachs 2002; Morales et al 2004; 

Kubasik-Juraniec et al 2004). The general consensus is 

that the accumulation of these dense bodies represents 

lysosomal aging and is a universal index of cellular senes-

cence (Schmucker and Sachs 2002; Terman et al 2007). It 

has been well established that the RPE has an extremely 

active lysosomal system capable of degrading thousands of 

phagocytosed outer segment disks per day (Young 1971; Zinn 

and Benjamin-Henkind 1979). The aged RPE accumulates 

indigested residues of this phagocytic process as residual 

bodies (Feeney-Burns et al 1987).

Lipofuscin pigment has been described as intracellular 

yellow-brown autofl uorescent granules exhibiting sudano-

philic, osmiophilic, argyrophilic and periodic acid-Schiff-

positive and acid-fast staining characteristics (Feeney 1978). 

Lipofuscin is a heterogeneous material composed of a mix-

ture of lipids and different fl uorescent compounds, the main 

fl uorophore of which has been identifi ed as the pyridinium 

bis-retinoid, N -retinylidene-N -retinylethanolamine (A2E), 

a derivative of vitamin A. RPE lipofuscin is unique because 

it originates mainly from the phagocytosed photoreceptor 

outer segments as was demonstrated in early studies. For 

instance, analysis of the chemical composition of RPE cells 

revealed that it is different from the photoreceptor outer 

segments (Berman et al 1974). In addition, investigations 

undertaken on the Royal College of Surgeons (RCS) rats 

showed that in this strain, which fails to phagocytose shed 

outer segments, lipofuscin is signifi cantly diminished (Katz 

et al 1986; Eldred and Lasky 1993). Moreover, the accumula-

tion of autofl uorescent debris was observed in a transgenic 

mouse line expressing a mutated form of cathepsin D that 

is enzymatically inactive, thereby impairing the processing 

of phagocytosed photoreceptor outer segments by the RPE 

cells (Rakoczy et al 2002). A recent study established the 

presence of extragranular material present in preparations 

of lipofuscin routinely isolated by sucrose density gradient 

centrifugation. In this study, the lipofuscin granules were 

isolated and further purifi ed by digestion of the extragranular 

material with proteinase K or by wash with SDS detergent. 

Raw and purifi ed granules were tested for their protein 

content. The results demonstrated that: debris-free granules 

contain little or no protein; the protein associated with lipo-

fuscin granules is essentially all extra-granular and appears to 

be signifi cantly modifi ed by posttranslational modifi cations 

(Renganathan et al 2007). Lipofuscin granules fi rst appear 

in the basal portions of RPE cells of young eyes (1st decade, 

Figure 1C), whereas in older eyes (9th decade, Figure 1D), 

lipofuscin granules form into clumps and fi ll the entire RPE 

cell cytoplasm (Wing et al 1978). It is suggested that the 

accumulation of lipofuscin in aged RPE is connected to RPE 

functional degeneration either by “clogging” of the cytoplasm 

or by increased oxidative stress in the cell. Support for the 

fi rst mechanism (clogging of the cytoplasm) comes from a 

recent study, which implanted glycoxidized microspheres 

(Glycox-MS) as imitation for lipofuscin into the subretinal 

space of 10–12 week-old rabbits. Observations were carried 

out from 1 to 16 weeks after subretinal implantation. Glycox-

MS stagnated for a prolonged period in the cytoplasm of RPE 

cells and eyes implanted with glycox-MS produced drusen-

like deposits at a signifi cantly higher frequency (Yasukawa 

et al 2007). Support for the second mechanism (increased 

oxidative stress in the RPE cells) comes from observations 

that lipofuscin is a photoinducible generator of superoxide 

anion, singlet oxygen and hydrogen peroxide (Boulton et al 

1993; Gaillard et al 1995; Rozanowska et al 1995, 1998). 

Thus, visible-light irradiation (400–1100 nm) of lipofuscin 

granules results in extra-granular oxidation of lipids and inac-

tivation of lysosomal and antioxidant enzymes (Wassel et al 

1999). In addition, it was shown that A2E has phototoxic and 

detergent properties and is capable of inducing disintegration 

of membrane-bound organelles in RPE cultures. Finally, 

lipofuscin can also interfere with the antioxidant properties of 
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melanin (Boulton et al 1993; Rozanowska et al 1995; Schutt 

et al 2001, 2002; Wang et al 2006). The aged RPE displays 

increased intracellular accumulation of the blue-shifted auto-

fl uorescence lipofuscin granules, which coincides with the 

depletion of melanin pigments (Feeney-Burns 1984; Han et al 

2007). RPE lipofuscin granules exhibit a broad band emission 

spectrum with a peak at 600 nm and subsidiary shoulders 

located at 470 and 550 nm when excited at 364 nm; a 680 

peak appears with increasing age (Boulton et al 1990).

Bruch’s membrane (BM) is a pentalaminar structure 

composed of the RPE basement membrane, inner collag-

enous layer, middle elastic layer, outer collagenous layer, and 

the choroidal endothelial cell basement membrane (Hogan 

and Alvarado 1967). This acellular extracellular meshwork 

found between the RPE and the choroid, which is 2–4 μm 

thick is known to undergo increased thickening (Figure 1J), 

chemical reconfi guration of both proteins and lipids, and 

debris accumulation during aging (Pauleikhoff et al 1990; 

Okubo et al 1999; Zarbin 2004). The aged BM displays an 

exponential increase in phospholipids, triglycerides, fatty 

acids, and free cholesterol content (Sheraidah et al 1993). 

Protein reconfi guration in the form of post-translational 

modifi cations has been reported in the BM. Immunore-

activity to some of the advanced glycation end product 

(AGE) adducts increases in the aged BM (Farboud et al 

1999; Handa et al 1999). Although the precise contribution 

of AGEs to the retinal pathology remains to be elucidated, 

AGEs are recognized as important initiators of age-related 

dysfunction, inasmuch as they are known to cause protein 

cross-linking, reduced solubility, enzymatic dysfunction, and 

loss of receptor recognition (Baynes 2001). A recent study 

combined both Raman microscopy and specifi c chemical 

quantifi cation to assess defi ned AGE adducts and quantify 

AGE-related spectral alterations in aged BM of postmortem 

eyes (Glenn et al 2007). The analysis showed that the AGEs 

pentosidine, carboxymethyllysine (CML), and carboxyethyl-

lysine (CEL) occurred at signifi cantly higher levels in BM-

Ch with age (Glenn et al 2007). In addition, several recent 

studies demonstrated that tissue metalloproteinase inhibitor 

3 (TIMP-3), vitronectin, annexins, crystallins, clathrin and 

adaptin proteins were crosslinked as evidenced from western 

blots that showed the presence of these proteins at several 

regions of the gel (Nakata et al 2005; Rayborn et al 2006; 

Bando et al 2007).

In addition, BM is under constant cycles of pressure-

induced stress as a result of the choroidal fl ow oscillating 

with the cardiac rhythm. The mechanical properties of BM 

are critical determinants of its physiology. Specifi cally, the 

elastic properties of BM will determine its ability to sustain 

potentially damaging stress and strain perturbations. Recently 

the mechanical properties of isolated human BM were inves-

tigated and related to aging. This study demonstrated that 

the elasticity of human BM-Ch complex decreased linearly 

with aging after the age of 21 with an approximate reduc-

tion of 1% per year. On the other hand, the recoil capacity 

of Bruch’s membrane-choroid was not affected by aging 

(Ugarte et al 2006).

Drusen are debris-like deposits that accumulate below 

the RPE along BM (Figure 1F). Clinically, they are char-

acterized by the terms “hard” and “soft” according to their 

size and their appearance in fl uorescein angiography. Hard 

drusen are small, hard, round and have well defi ned borders 

(Marshall et al 1998). Hard drusen occur in 80% of postmor-

tem eyes, and are usually small, they are hyperfl uorescent on 

fl uorescein angiography, a characteristic that may be related 

to the fact that they are enriched in phospholipids (Bird and 

Marshall 1986; Pauleikhoff et al 1992; Arnold et al 1997). 

On the other hand, soft drusen are extensive, diffuse, large 

deposits, which have borders not sharply defi ned, and rarely 

occur before the age of 55 (Garner et al 1994; Marshall et al 

1998). Soft drusen are hypofl uorescent in fl uorescein angiog-

raphy and display a high content of neutral fats (Pauleikhoff 

et al 1992; Arnold et al 1997), vesicles, membranous debris, 

and wide-spaced collagen. Generally, hard drusen do not lead 

to loss of vision, but soft drusen are considered contribu-

tors to the pathology of age-related macular degeneration 

(AMD). Soft drusen deposition in the macula precedes 

visual loss; it defi nes the early stages of AMD together with 

pigmentary changes of the RPE. Deposition of soft drusen 

in the macula is considered the precursor lesion that leads 

to the development of geographic atrophy (dry AMD) and 

choroidal neovascularization (wet AMD), which are the late 

forms of AMD. The different types of AMD will be discussed 

in detail in the following text.

A recent proteomic study carried out on isolated drusen 

from both AMD and normal donors found up to 65% of the 

proteins identifi ed common to both donor types. TIMP-3, 

clusterin, vitronectin, and serum albumin were the most 

common proteins observed in normal donor drusen, whereas 

crystallin was detected more frequently in AMD donor 

drusen. In addition, protein from both normal and AMD 

donors such as vitronectin, TIMP-3, clusterin, complement 

C9, lysosyme C, serum amyloid P, and apolipoprotein E 

migrated in multiple mass ranges from the top to the bottom 

of the gel, suggesting the presence of covalent crosslinks 

(Crabb et al 2002).
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Recent work from several groups also suggests that local 

infl ammation plays a role in drusen formation in a process 

analogous to that which occurs in other age-related diseases 

such as Alzheimer’s disease and atherosclerosis, in which 

there is an accumulation of extracellular plaques and deposits 

causing a local chronic infl ammatory response which in turn 

exacerbates the effects of the primary stimuli (Hageman 

et al 2001; Johnson et al 2001; Anderson et al 2002). This 

hypothesis is supported by evidence revealing the localiza-

tion of several proteins involved in the immune system such 

as immunoglobulins; components of complement cascade 

(such as C5b-9 complex, complement factor F); MHC class 

II antigens; cell-associated molecules, including HLA-DR 

and specifi c CD antigens (Mullins et al 2000; Hageman et al 

2001; Johnson et al 2001; Anderson et al 2002).

Few studies have demonstrated age-related effects on 

RPE microvilli. A fi nding common to all of them was the 

shortening of the RPE microvilli (Katz and Robison 1984; 

Lai and Rana 1986; Weisse 1995). Previously, we have been 

able to isolate intact RPE microvilli from mice (Bonilha 

et al 2004) and characterize its content using proteomics. 

Several of the identifi ed proteins in the microvilli fraction 

are antioxidant enzymes and have been shown to undergo 

specifi c modulation during aging. These include lactate 

dehydrogenase, glutathione S-transferase, peroxiredoxin, 

ceruloplasmin, and superoxide dismutase. Our data are sup-

ported by several reports, which identifi ed the presence of 

antioxidative enzymes in the microvilli of kidney (Davies 

et al 1993; Muse et al 1994), respiratory tract epithelium 

(Coursin et al 1992), and intestine (Davis et al 1989), among 

others. Oxidation is a very important mechanism in aging 

(Kohen and Nyska 2002; Balazy and Nigam 2003; Van Rem-

men et al 2003; Kregel and Zhang 2007). RPE apical micro-

villi shortening is also expected to affect several of the key 

functions carried out by the apical surface. Examples of these 

include phagocytosis of shed photoreceptor outer segments 

through the receptors αvβ5 vitronectin receptor and the Mer 

tyrosine kinase (MerTK) receptor protein; apical transport 

involving transporters such as Na,K-ATPase, the glucose 

transporter (Glut-1), monocarboxylate transporter 1 (MCT1), 

basigin, the Kir7.1 K+ channel, chloride intracellular channel 

6, carbonic anhydrase XIV, among others; and visual cycle 

function through the involvement of CRALBP, RPE65, 

IRBP, and CRBP (Rayborn et al 2005). These changes could 

alter the retinal metabolic equilibrium and accelerate degen-

erative processes in the aging retina. Our ongoing research 

aims to identify a protein profi le that is uniquely present in 

aged RPE cells. Our fi ndings will lead to future studies on 

the functional consequence of these proteins and to a more 

complete understanding of the pathogenesis of AMD.

Animal models in RPE aging studies
A good animal model should reduplicate biochemical, mor-

phological, and molecular changes shown in humans during 

aging. Much of our understanding of the biological changes 

that occur with aging has come from studies using rodents. 

Similarities in the physiology and cell biology of aging in 

humans and rodents make rodents a valuable model with 

which to test therapeutic interventions for aging, and they are 

small enough to allow for the use of statistically robust sample 

sizes. There are several rodent models to choose from. The 

National Institute on Aging (NIA) supports many resources 

to facilitate the use of animal models for biogerontological 

research, including aged rodent colonies, the aged rodent 

tissue bank, and tissue arrays from aged rodents (Nadon 

2006). One of the rodent models available for aging studies 

is the rat F
1
 F344/BN hybrid. The aged (24–25 month-old) 

F344/BN rat displays several of the RPE age-related changes 

described above; specifi cally, BM thickening, lipofuscin 

accumulation, accumulation of residual bodies, decrease in 

RPE density and microvilli atrophy when compared to young 

(3–4 month-old) rats (Figure 2).

Age-related changes in RPE density
Numerous studies have been undertaken to determine 

changes in RPE density with age. However, previous studies 

yielded contradictory results: Some found that RPE density 

increased with age (Tso and Friedman 1968; Harman et al 

1997; Leung et al 2004). Others found that it decreased 

(Streeten 1969; Gao and Hollyfi eld 1992; Watzke et al 1993); 

while yet another study found that it did not change with age 

at all (Dorey et al 1989). The discrepancies among these 

studies can be explained by the number of eyes analyzed and 

by the nature of the analyses which were carried out. Use of 

cross-sections allows analysis of a restricted number of cells, 

whereas whole-mount preparations allows analysis of the 

whole population of cells in the tissue. One study (Gao and 

Hollyfi eld 1992) investigated this issue analyzing eyes from 

donors from the 2nd to the 9th decade. Tissue fragments were 

obtained and analyzed as whole-mounts from the fovea and 

the retinal equator. Observations suggested that foveal RPE 

is denser, with cells smaller and more homogeneous, inde-

pendent of the age of the donor, as shown in Figure 3A and 

C. Linear regression of the obtained data yielded a signifi cant 

negative slope of RPE density in the retinal equator, sug-

gesting a uniform rate of equatorial RPE loss during aging. 
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Figure 2 Age-related changes in F1 F344BN hybrid rat RPE. Observation of young (3–4 month-old, A) and aged (24–25 month-old, B) F1 F344BN hybrid rats reveals several 
of the RPE age-related changes previously described. These include: Bruch’s membrane thickening (D), accumulation of residual bodies, and microvilli atrophy (B). In addition, 
bright-fi eld analysis of aged RPE whole-mounts reveals decrease in RPE density (G) while epifl uorescence in the green channel (FITC fi lter: excitation 495 nm/emission 519 nm) 
reveals increased lipofuscin accumulation (H) when compared to the young RPE cells (E and F). A–D. Transmission electron microscopy.
Abbreviations: BI, basal infoldings; MV, microvilli; POS, photorecptor outer segments; RPEBM, RPE basement membrane; ICL, inner collagenous layer; MEL, middle elastic layer; 
OCL, outer collagenous layer; EBM, choroidal endothelial cell basement membrane; Bars: (A and B), 1 μm; (C and D), 2 μm; and (C to F), 200 μm.
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On the other hand, foveal RPE density was relatively stable 

from the 2nd through the 9th decades, with no signifi cant 

decrease in cell density (Gao and Hollyfi eld 1992).

Another study investigated the age-related changes in 

RPE in an even larger number of eyes from donors from 

the 2nd to the 9th decade (Panda-Jones et al 1996). Using a 

3 mm trephine the authors collected RPE/retina/choroid in 

the fovea and in the superior, inferior, temporal, and nasal 

meridians in 6 rings that were arranged concentrically around 

the fovea. These samples were also analyzed as whole-mount 

preparations. As in the previous study, the authors concluded 

that RPE density at the foveal center was the highest and that 

it decreased signifi cantly from the fovea to the mid-retinal 

periphery. In the periphery, RPE density was the highest in 

the nasal region. The age-related loss was most marked in 

the fovea and the mid periphery. The authors determined 

that RPE cell density in the fovea decreased signifi cantly by 

about 0.3% per year with increasing age.

The elderly suffer from loss of visual acuity (Weale 

1975; Del Viva and Agostini 2007), color perception (Ohta 

and Kato 1975; Page and Crognale 2005), and dark-adap-

tation sensitivity (McFarland et al 1960; Werner 2005). 

These conditions are probably associated with age-related 

death of RPE and photoreceptors. It is important to under-

stand the mechanisms involved in these cell deaths. One 

study specifi cally addressed this issue by analyzing age-

related RPE apoptosis through terminal deoxynucleotidyl 

transferase-mediated dUTP nick end (TUNEL)-labeling in 

whole-mount preparations of eyes divided into 4 concentric 

regions centered on the fovea. Overall, analysis showed that 

TUNEL-positive RPE cells were uncommon. There was a 

signifi cant positive correlation between the donor’s age and 

the number of apoptotic cells. Analysis of the individual 

regions revealed that within zone 1 (0–1.5 mm radius) the 

proportion of apoptotic RPE cells started to increase in the 

6th decade. There was also an age-dependent increase in 

Figure 3 Age-related changes in RPE density. Bright-fi eld micrographs of RPE whole- mounts from both young (A and B) and aged (C and D) donor eyes. Observations were 
carried out both in the fovea (A and C) and periphery (B and D) of the eyes. Foveal RPE cells are smaller and more homogeneous than the peripheral RPE cells independent 
of the age of the donor. Bas, 200 μm.
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apoptosis within zone 2 (1.5–3.0 mm radius, at a much lower 

number) (Del Priore et al 2002).

RPE changes and loss in AMD
AMD is the most common cause of irreversible blindness in 

the elderly population in industrialized countries (Leibowitz 

et al 1980; Klein et al 1995; Kelin et al 2004). Although aging 

is an important event that contributes to the pathogenesis of 

AMD, it does not directly lead to the occurrence of AMD 

(Sarks 1976; Young 1987). AMD occurs in two forms: neo-

vascular or exudative (wet) and atrophic (dry) AMD. Neovas-

cular AMD is characterized by abnormal growth of capillaries 

from the choroid into the Bruch’s membrane and RPE and 

by subsequent exudation of fl uid, lipid, and blood. It results 

ultimately in a disciform scar in the macula and is responsible 

for severe, sudden visual loss (Holloway and Verhoeff 1929; 

Verhoeff and Grossman 1937). Atrophic AMD, also known 

as geographic atrophy (GA) is characterized by a progressing 

course leading to degeneration of RPE and photoreceptors. 

Studies have shown that the atrophy initially tends to develop 

in the perifoveal area, while the fovea may be spared until 

later during the clinical course (Sarks et al 1988; Sunness 

1999). GA is characterized by a loss of the outer neurosen-

sory retina, the RPE, and the choriocapillaris (Figure 4). 

The primary dysfunction and cell death of the RPE cells 

is thought to occur initially, followed by collateral loss of 

neighboring photoreceptor cells and choriocapillaris (Sarks 

et al 1988; Roth et al 2004). Previous studies have shown 

that photoreceptor apoptosis is involved in AMD pathology 

(Green and Enger 1993; Xu et al 1996). Recently, another 

study quantifi ed the number of TUNEL-positive cells in each 

retinal layer in cryosections of AMD and control eyes. The 

authors showed that maculas with AMD had a statistically 

signifi cant increase in TUNEL-positive RPE cells compared 

with the control ones. In the GA eyes, TUNEL-positive rods 

and RPE nuclei were present near the edges of RPE atrophy 

(Dunaief et al 2002). Additional data also suggest that A2E, 

a lipofuscin component, induces apoptosis in RPE cultures 

(Suter et al 2000). Finally, apoptosis was also observed in 

surgically excised choroidal neovascular (CNV) membranes 

from AMD-affected eyes (Hinton et al 1998).

Clinical features common in both types of AMD include 

the presence of drusen and hypo- and hyperpigmentation 

of the RPE. Histological features of RPE in AMD include 

accumulation of lipofuscin, formation of drusen and of basal 

deposits in the BM, and alteration in the BM extracellular 

matrix (Hogan 1972; Sarks 1976; Young 1987; Green and 

Enger 1993; Roth et al 2004; Nowak 2006). As mentioned 

above, these features are also observed, with lower intensity, 

in the aging RPE. However, the changes in AMD lead to 

severe loss of vision.

AMD is a multifactor disease with genetic components 

(Klaver and Allikmets 2003; Gold et al 2006; Hageman et al 

2006; Scholl et al 2007). However, exogenous factors such as 

light exposure, a high fat diet, high blood pressure, and smok-

ing (Leibowitz et al 1980; Cruickshanks et al 1993; Cousins 

et al 2002) are known to modulate its pathogenesis. In addi-

tion, abnormal regulation of the complement system, likely 

caused by the Y402H polymorphism in the complement 

factor H gene on 1q, is a recognized risk factor for AMD, as 

is the A69S variant in the poorly characterized LOC387715 

gene and the serine protease HTRA1 in multiple populations 

(Edwards et al 2005; Haines et al 2005; Jakobsdottir et al 

2005; Klein et al 2005; Rivera et al 2005; Dewan et al 2006; 

Figure 4 RPE cell loss in geographic atrophy. Gross photomicrography of a postmortem eye from an AMD donor with geographic atrophy (GA) (A). Arrows indicate the edges 
of GA; inset indicates the region cut and processed for transmission electron microscopy. Semi-thin epon sections stained with toluidine blue of this region demonstrates 
extensive RPE, photoreceptors and choroids atrophy in the GA region (B) while the edge of GA displays more RPE cells and the presence of some photoreceptor outer seg-
ments (C). In the region outside of the GA the RPE layer is continuous and the photoreceptors’ inner and outer segments can be observed (D). Arrowheads point to Bruch’s 
membrane. Debris accumulation is observed underneath the RPE cells in all regions observed. Bars 200 μm.



Clinical Ophthalmology 2008:2(2) 421

Age- and disease-related changes in the RPE

Yang et al 2006). On the other hand, polymorphisms in the 

factor B and complement component 2 are associated with 

decreased susceptibility to AMD (Gold et al 2006; Spencer 

et al 2007). Previous studies had identifi ed the genes ABC4, 

APOE, TLR4, and FBLN5 as being associated with suscep-

tibility to AMD. However, the fraction of AMD patients 

carrying sequence changes in these genes was very small 

(Scholl et al 2007).

As mentioned above, complement activation has been 

implicated in susceptibility to AMD, mainly through 

complement factor H. It is synthesized mainly in the liver 

and released into the blood where it is transported to other 

tissues. However, high levels of complement factor H are 

detected in the retina-choroid interface (Mandal and Ayyagari 

2006; Chen et al 2007). This expression increases with age 

(Mandal and Ayyagari 2006). In addition, it was suggested 

that the RPE synthesizes complement factor H locally 

(Hageman et al 2005). The RPE production of factor H would 

increase the local concentration of complement regulators 

and provide protection to inappropriate complement activa-

tion at sites of infection and infl ammation (Rodriguez et al 

2004). This mechanism would be particularly important in 

the retina, as the complement factors supplied by the blood 

may be restricted through the blood-brain barrier (Mandal 

and Ayyagari 2006).

Several reports have shown that oxidative mechanisms 

constitute the initial stimulus that triggers apoptosis, thereby 

contributing to the progression of AMD. The retina is highly 

susceptible to photo-oxidative damage due to its high oxygen 

demand, life-long exposure to light and the presence of poly-

unsaturated fatty acids highly enriched in the photoreceptor 

outer segments (Beatty et al 2000; Roth et al 2004). This 

scenario is aggravated with age, for there is a reduction in 

the local antioxidative enzymes in the RPE and a decrease in 

macular pigment density, which serves not only as a fi lter for 

short-wavelength light, but also as an antioxidant, through 

its two constituents, lutein and zeaxanthin. The age-related 

increase in oxidative stress leads to cellular events which 

in turn induce the histopathological changes associated 

with AMD, as described above. An animal model recently 

described the connection between oxidation, infl ammation 

and pathology of AMD. In this model, mice were injected 

with mouse serum albumin adducted with carboxyethylpyr-

role, an oxidation fragment generated from the protoreceptor-

enriched lipid docosahexaenoic acid. Injected mice develop 

antibodies to this hapten, fi x high amounts of complement 

component 3 in Bruch’s membrane, accumulate drusen below 

the RPE, and develop lesions in the RPE-photoreceptor 

interface that mimic AMD (Hollyfi eld et al 2007). The 

severity of the cellular lesions correlated with the antibody 

production titer.

Outlook
The aged RPE is characterized by several structural changes, 

which are exacerbated in AMD. These structural changes are 

known to be associated with an increase in oxidative stress 

and general decline of basic functions. Recently, it became 

evident that RPE and choriocapillaris express many if not 

all of the components and regulators of the complement 

cascade. Moreover, the RPE also plays an important role in 

the development of immune and infl ammatory responses in 

the posterior part of the eye through production of cytokines. 

However, little is known about it in aging. The connection 

between oxidation and immune system in aging will provide 

a powerful approach for the elucidation of the many senile 

degenerative macular and peripheral retinal diseases such 

as AMD.
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