Future OCT Technology

SriniVas Sadda, MD

Professor of Ophthalmology Director, Medical Retina Unit Ophthalmic Imaging Unit Doheny Jymage Reading Center Ooheny Eye Institute University of California – Los Angeles

RETINAL UPDATE 2015 January 31, 2015

Disclosure

- Research Grant Recipient: Optos, Carl Zeiss Meditec, Optovue
- Consultant: Carl Zeiss Meditec, Optos

Limitations of existing SDOCT

- Retinal layers are well visualized, but not individual cells
- Speed is adequate, but still limits scanning area or amount of oversampling
- Functional data still relatively limited
- Dynamic vascular (blood flow/leakage) information is lacking
- Automatic quantitative data is limited
- Requires trained operator

Future OCT Technologies

OUTLINE

- Improved Resolution
- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Resolution
 - Crossed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies • Improved Resolution • Improved Speed

- Improved Penetratio
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Resolution
- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

Improved Resolution

• Improved Speed

- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Resolution
 - proved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Resolution
- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Future OCT Technologies

OUTLINE

- Improved Resolution
- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

Optophysiology

- Dual laser approach
- High-speed long wavelength used to obtain repeated OCT scans from same location over time, without stimulating photoreceptors
- Separate visible light laser used to activate photoreceptors

Non-Arteritic Anterior Ischemic Optic Neuropathy Inferior altitudinal visual field defect matched with lower superior blood flow in 3/3 cases.				
	Case	12.99	19.47	
	Normal mean±SD (Range)	23.5 ± 3.0 (19.2-27.5)	22.2 ± 2.6 (19.6-27.4)	
Alfredo Sadun, MD, PhD				

Su Pr	uperior Branch Vein Occlusion & Geroliferative Diabetic Retinopathy		
	T S N	Amani Fawzi, MD	
Venous Flow	Superior (µl/min)	Inferior (µl/min)	
Case	8.2	12.1	
Normal mean±SD (Range)	$23.5 \pm 3.0 \\ (19.2-27.5)$	22.2 ± 2.6 (19.6-27.4)	

Using the complex data encoded within

• After eliminating Brownian motion and

generally discarded by most commercial devices), structures with motion may be

the OCT images (complex data is

selectively isolated.

fixation artifact, most of the residual motion in the eye is blood flow.

OCT Angiography

Phase variance OCT

Neovascular AMD, FVPED s/p
>30 ranibizumab injectionsOld lesion - mature vessels
within membraneDeep Retinal Capillary PlexusCourtesy of Jeff Fingler, Scott Fraser

- Motion artifact can be a problem for obtaining high-quality images in some patients.
- Fixation tracking may be a key requirement for optimal imaging

Future OCT Technologies

OUTLINE

Improved Resolution

Resolution

- Improved Speed
- Improved Penetration
- Functional Information
- Vascular/Molecular Imaging
- Increased Automation

